| 研究生: |
曾少澤 Shao-ze Tseng |
|---|---|
| 論文名稱: |
表面粗化技術對矽基異質接面薄膜太陽能電池元件之研究 Surface Texturization Technology on the Applications of Heterojunction Silicon Solar Cells |
| 指導教授: |
陳昇暉
Sheng-hui Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 抗反射結構 、異質接面薄膜太陽能電池 、磁控濺鍍 、表面粗化技術 |
| 外文關鍵詞: | Anti-reflection structures, Heterojunction thin film solar cells, Magnetron sputtering, Surface texturization technology |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能電池元件的光生電流大小與元件的光損耗(Optical loss)有關,對於經拋光處理後的平面單晶矽晶圓基板而言,於其材料吸收波段的入射光平均反射率會高達36%左右,這對於電池元件而言是非常大的光損耗現象,因此製作高效抗反射結構應用於電池元件上一直是非常熱門的研究題目之一。本論文研究主題在於利用奈米小球微影方法(Nanosphere lithography)於矽晶圓表面製作奈米級二維週期性粗化結構,使矽晶圓對於其吸收波段的平均反射率能夠大幅降低,並將此奈米級粗化結構應用於本研究團隊核心技術之磁控濺鍍法製備矽基異質接面薄膜太陽能電池上,接著探討分析粗化結構的參數變化對於電池元件輸出特性的影響。
本論文首先會探討磁控濺鍍參數與製備異質接面電池元件中的矽薄膜特性變化關係,並選擇合適的矽薄膜應用於電池元件上得到初步的元件效率,再針對元件製程以及透明導電膜的結構進行改良優化之研究,進而得到轉換效率穩定且再現性佳的電池元件。接著製作出不同結構參數的奈米級粗化結構矽基板應用於電池元件表面,探討奈米抗反射結構對電池元件輸出特性的影響。本論文之實驗結果證實利用奈米小球微影法製作出的最佳奈米級表面抗反射結構於波長區段為400 nm~1000 nm之平均反射率可降低至1.24%,而加上適當厚度抗反射薄膜則可將基板平均反射率再優化至0.53%。另外,結合奈米小球微影法製程之粗化結構異質接面電池元件的最低平均反射率可降至2.04%,該粗化結構對電池元件轉換效率的提昇效果可達31.49%。
The photo-currents of solar cells are dependent on the optical loss. For example, there is about 36% of average reflectance on a polished Si wafer within the absorb wavelength region. Therefore, how to fabricate an anti-reflection structure to achieve a high efficiency solar cell has been one of the popular research topics.
In this research, a method for a HJT solar cell fabricated by using radio frequency magnetron sputtering has been described. The HJT solar cell was formed on a nanostructure silicon substrate fabricated using the nanosphere lithography process. The nanostructure properties were analyzed to compare with the output characteristics of the HJT solar cell. According to our measurement results, the average reflectance of a Si wafer with the bullet anti-reflection nanostructure was decreased to 1.24% between the wavelength arrange of 400 nm ~ 1000 nm. Then we deposited an anti-reflection thin film on the bullet nanostructure to achieve a better anti-reflection effect where the average reflectance was decreased to 0.53%. The best conversion efficiency of the nanopattern silicon substrate (NPSiS) HJT solar cell was 31.49% greater than that of the HJT solar cell on a flat silicon wafer. The average reflectance of the NPSiS HJT solar cell and the polished HJT solar cell were 2.04% and 14.80%, respectively.
[1.1] 許巧玲, 科學天地. (2004) 10-15
[1.2] 張品全, 科學發展. 349 (2002) 23-29
[1.3]http://commons.wikimedia.org/wiki/File%3ABest_Research-Cell_Efficiencies.png.
[1.4] G. A. Martin, E. Keith, H. Yoshihiro, W. Wilhelm and D. D. Ewan “Solar cell efficiency tables (version 43)” Progress in Photovoltaics: Research and Application, 22, 1-9, (2014).
[1.5] M. Tanaka, T. Matsuyma, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, "Devolpment of New a-Si/ c-Si Heterojunctiom Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)" Applied Physics Letters, 31, 3518-3522, (1992).
[1.6]http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html
[1.7] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, and electrical properties of amorphous silicon films”, Physical Review B, 1, 2632-2641, (1970).
[1.8] G. A. N. Connell and J. R. Pawlik, “Use of hydrogen in structural and electronic studies of gap states in amorphous germanium”, Physical Review B, 13, 787-804, (1976).
[1.9] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium”, Physical Review B, 14, 658-668, (1970).
[1.10] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Philosophical Magazine, 33, 935-949, (1976).
[1.11] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Solid State Communications, 20, 969-972, (1976).
[1.12] T. D. Moustakas, D. A. Anderson and W. Pual, “Preparation of highly photoconductive amorphous silicon by rf sputtering”, Solid State Communications, 23, 155-158, (1977).
[1.13] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, 31, 292-294, (1977).
[1.14] M. H. Brodsky, M. Cardona and J. J. Cuomo “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Physical Review B, 16, 3556-3571, (1977).
[1.15] E. C. Freeman and W. Paul, “Infrared vibrational spectra of rf-sputtered hydrogenated amorphous silicon”, Physical Review B, 18, 4288-4300, (1978).
[1.16] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, Journal Electronic Materials, 8, 391-435, (1979).
[1.17] T. Tiedje, T. D. Moustakas and J. M. Cebulka, “Effect of hydrogen on the density of gap states in reactively sputtered amorphous silicon”, Physical Review B, 23, 5634-5637, (1981).
[1.18] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated by reactive sputtering”, Applied Physics Letters, 40, 515-517, (1982).
[1.19] T. D. Moustakas and H. P. Maruska, “Method for sputtering a pin microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets” United States Patent, No.4508609, (1985).
[1.20] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering” Physica B, 308-310, 257-260, (2001).
[1.21] M. M. de Lima Jr., F. L. Freire Jr., and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering” Brazilian Journal of Physics, 32, 379-382, (2002).
[1.22] M. Pinarbasi, J. R. Abelson and M. J. Kushner, “Reduced Staebler-Wronski effect in reactively sputtered hydrogenated amorphous silicon thin films”, Applied Physics Letters, 56, 1685-1687, (1990).
[1.23] Minfeng Chen, Hung-chun Chang, Allan S. P. Chang, Shawn-Yu Lin, J.-Q. Xi, and E. F. Schubert, ”Design of optical path for wide-angle gradient-index antireflection coatings”, Apploed Optics, 46, 26, 6533-6538, (2007).
[1.24] Mei-Ling Kuo, David J. Poxson, Yong Sung Kim, Frank W. Mont, Jong Kyu Kim, E. Fred Schubert,and Shawn-Yu Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization”, Optics Letters, 33, 2527-2529, (2008).
[1.25] H. Angermann, J. Rappich a, L. Korte , I. Sieber , E. Conrad , M. Schmidt , K. Hu¨bener , J. Polte , J. Hauschild, ” Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application”, Applied Surface Science, 254, 3615-3625, (2008).
[1.26] Chung-Feng Jeffrey Kuo, Hung-Min Tu, Te-Li Su, “Optimization of the Electron-Beam-Lithography Parameters for the Moth-Eye Effects of an Antireflection Matrix Structure”, Journal of Applied Polymer Science, 102, 5303-5313, (2006).
[1.27] Kui-Qing Peng, Xin Wang, Li Li, Xiao-Ling Wu, and Shuit-Tong Lee, “High-Performance Silicon Nanohole Solar Cells”, Journal of the American Chemical Society, 132, 6872-6873, (2010).
[1.28] Erik H. Anderson, Henry I. Smith, Mark L. Schattenburg, “Holographic Lithography”, United States Patent, No.5142385, (1992).
[1.29] Chaitanya K. Ullal, Martin Maldovan, Edwin L. Thomas, Gang Chen, Yong-Jin Han, and Shu Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures”, Applied Physics Letters, 84, 5434-5436, (2004).
[1.30] Hitoshi Sai,a Homare Fujii, Koji Arafune, Yoshio Ohshita, Masafumi Yamaguchi, Yoshiaki Kanamori and Hiroo Yugami, ” Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks”, Applied Physics Letters, 88, 201116, (2006).
[1.31] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting”, Applied Physics Letters, 94, 263118, (2009).
[1.32] Gong-Ru Lin, Ya-Chung Chang, En-Shao Liu, Hao-Chung Kuo and Huang-Shen Lin, “Low refractive index Si nanopillars on Si substrate”, Applied Physics Letters, 90, 181923, (2007).
[1.33] H.W. Deckman, J.H. Dunsmuir, “Natural lithography”, Applied Physics Letters, 41, 377, (1982).
[1.34] W.A. Nositschka, C. Beneking, O. Voigt, H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks”, Solar Energy Materials & Solar Cells, 76, 155-166, (2003).
[1.35] Chih-Hung Sun, Brian J. Ho, Bin Jiang, and Peng Jiang, “Biomimetic subwavelength antireflective gratings on GaAs”, Optics Letters, 33, 2224-2226, (2008).
[1.36] Chia-Hung Hou, Shao-Ze Tseng, Chia-Hua Chan, Tsing-Jen Chen, Hung-Ta Chien, Fu-Li Hsiao, Hua-Kung Chiu, Chien-Chieh Lee, Yen-Ling Tsai, and Chii-Chang Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres”, Applied Physics Letters, 95, 133105, (2009).
[2.1] 李正中, “薄膜光學與鍍膜技術”, 第六版, 藝軒圖書出版社, (2009).
[2.2] http://www.pveducation.org/pvcdrom/pn-junction。
[2.3] Martin A. Green著, 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用”, 五南圖書出版有限公司, (2009).
[2.4]Masayuki Iwamoto, Kouji Minami and Toshihiko Yamaoki, “Photovoltaic device”, US patent 5066340, (1991).
[2.5] Makoto Tanaka, Mikio Taguchi, Takao Matsuyama, Toru Sawada, Shinya Tsuda, Shoichi Nakano, Hiroshi Hanafusa and Yukinori Kuwano, “Development of New a-Si/ c-Si Heterojunction Solar cells: ACH-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Japanese Journal of Applied Physics, 31, 3518-3522, (1992).
[2.6] B. Jagannathan, W. A. Anderson, J. Coleman, "Amorphous Silicon/p-type Crystalline Silicon Heterojunction Solar Cells", Solar Energy Material and Solar Cells, 46, 289-310, (1997).
[2.7] C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes”, Acta Physiologica Scandinavica, 56, 385-386, (1962).
[2.8] http://finediamondtools.blogspot.tw/2010/10/moths-eye.html.
[2.9] J. Poortmans and V. Arhipov, “Thin Film Solar Cells Fabrication, characterization and Applications”, (John Wiley & Sons, 2006).
[2.10] K. Tanaka. “Minimal Urbach energy in non-crystalline materials”. Journal of Non-Crystalline Solids, 389, 35-37, (2014).
[2.11] G. Lucovsky and W. B. Pollard, “The Physics of Hydrogenated Amorphous Silicon, Part II, Topics in Applied Physics”, (Springer, 1984).
[2.12] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Physical Review B, 45, 13367-13377, (1992).
[2.13] R. Schropp and M. Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, (Kluwer Academic Publishers, 1998).
[3.1] Yiming Liu, Yun Sun, Angus Rockett, “A newsimulationsoftwareofsolarcells—wxAMPS”, Solar Energy Materials & Solar Cells, 98, 124-128, (2012).
[3.2] H. Zhu et. al., ” Applications of AMPS-1D for solar cell simulation” in Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, Denver, Colorado, USA, 309–314, (1999).
[3.3] http://www.ampsmodeling.org/materialData_silicon.html
[3.4] I. Wagner, H. Stasiewski, B. Abeles, and W. A. Lanford, “Surface states in P- and B-doped amorphous hydrogenated silicon”, Physical Review B, 28, 7080-7086, (1983).
[3.5] J. Ristein and G. Weiser, “Influence of doping on the optical properties and on the covalent bonds in plasma deposited amorpohus silicon”, Solar Energy Material and Solar Cells, 12, 221-232, (1985).
[3.6] M. M. de Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, Journal of Non-Crystalline Solids, 299-302, 605-609, (2002).
[3.7] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Physical Review B, 34, 7031-7044, (1986).
[3.8] C. C. Tsai, “Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition”, Physical Review B, 19, 2041-2055, (1979).
[3.9] 王宣文, “以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響”, 國立中央大學博士論文, (2012).
[3.10] Park Ridge, “Handbook of semiconductor wafer cleaning technology : science, technology, and applications”, N.J., U.S.A. : Noyes Publications, (1993).
[3.11] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (version 39)”, Progress in Photovoltaics: Research and Applications, 20, 12-20, (2012).
[3.12] D. H. Zhang, B. Chen and D. Haneman, “Metal contacts on amorphous hydrogenated silicon: effects of annealing”, Thin Solid Films, 208, 87-90, (1992).
[3.13] S. K. Kim, J. C. Lee, S. J. Park, Y. J. Kim, K. H. Yoon, "Effect of Hydrogen Dilution on Intrinsic a-Si:H Layer Between Emitter and Si Wafer in Silicon Heterojunction Solar Cell " Solar Energy Materials and Solar Cells, 92, 298-301, (2008).
[4.1] S.Huet, G.V iera, L.Boufendi, “Effect of small crystal size and surface temperature on the Raman spectra of amorphous and nanostructured Si thin films deposited by radiofrequency plasmas”, Thin Solid Films, 403-404, 193-196, (2002).
[4.2] Shibin Li, Yadong Jiang, Zhiming Wu, Jiang Wu, Zhihua Ying, Zhiming Wang, Wei Li and Gregory Salamo, “Origins of 1/f noise in nanostructure inclusion polymorphous silicon films”, Nanoscale Research Letters, 6, 281, (2011).
[4.3] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, Hitoshi Sakata, Eiji Maruyama, Makoto Tanaka, "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells,93 ,670-673, (2009).
[4.4]Donald A. Neamen著, 楊賜麟譯, “半導體物理與元件”, 滄海書局出版, 初版, (2005).
[4.5]王佑庭, “以濺鍍法與表面鈍化處理製作矽基異質接面太陽能電池”, 國立中央大學碩士論文, (2013).
[4.6] H. Angermann, E. Conrad, L. Korte, J. Rappich, T. F. Schulze, and M. Schmidt, "Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 159-60, 219-223, (2009).
[4.7] S. Watanabe and Y. Sugita, "The role of dissolved-oxygen in hot-water during dissolving oxides and terminating silicon surfaces with hydrogen," Surface Science,327 ,1-8, (1995).
[4.8] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE, 457-460, (1996).
[4.9] R. A. Sinton and A. Cuevas, "Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data," Applied Physics Letters, 69, 2510, (1996).
[4.10] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation," Solar Energy Materials and Solar Cells, 92, 673-681, (2008).
[4.11] W. K. Oh, S. Q. Hussain, Y. J. Lee, Y. Lee, S. Ahn, and J. Yi, "Study on the ITO work function and hole injection barrier at the interface of ITO/a-Si: H(p) in amorphous/crystalline silicon heterojunction solar cells," Materials Research Bulletin, 47, 3032-3035, (2012).
[4.12] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation," physica status solidi (a), 205, 1215-1221, (2008).
[4.13] 周世欽, “透明導電膜功函數對矽異質接面太陽能電池之影響”, 國立中央大學碩士論文, (2013).
[4.14] K. Bädeker, ” Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen”, Annalen der Physik (Annals of Physics), 327, 749-766, (1907).
[4.15]中澤弘實,“最新太陽能電池總覽”, 株式會社技術情報協會發行, p.397, Sep. (2007).
[4.16]楊明輝, “透明導電膜”, 第二版, 藝軒圖書出版社發行, Nov. (2012).
[4.17] J.-H. Lee, "Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering," Journal of Electroceramics, 23, 554-558, (2009).
[4.18] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, 47, 4086-4089, (1976).
[5.1] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, Optical Society of America, 71, 811-818, (1981).
[5.2] L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures”, Optical Society of America, 13, 1870-1876, (1996).
[5.3] S. T. Peng, T. Tamir and H. L. Bertoni, “Theory of periodic dielectric waveguides”, IEEE Transactions on Microwave Theory and Techniques, 23, 123-133, (1975).
[5.4] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions Antennas Propagation, 14, 302-307, (1966).
[5.5] K. K. Kawano, and Tsutomu, “Introduction to optical waveguide analysis: Solving Maxwell's equation and the Schrödinger equation", (John Wiley & Sons, 2001).
[5.6]欒丕綱, 陳啟昌, ”光子晶體-從蝴蝶翅膀到奈米光子學”,五南圖書出版股份有限公司, (2006)
[5.7] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves”, Journal of Computational Physics, 114, 185-200, (1994).
[5.8]陳煒,”用奈米小球微影法製作多晶矽太陽能電池表面結構”, 國立中央大學碩士論文, (2011).
[6.1] Shao-Ze Tseng, Chang-Rong Lin, Hung-Sen Wei, Chia-Hua Chan, and Sheng-Hui Chen, “Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering”, International Journal of Photoenergy, accepted, (2014).
[6.2] A. P. Li, F. Auller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by self-organization in Anodic Alumina”, Journal of Applied Physics, 84, 11, 6523-6526, (1998).
[6.3] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, H. Yugami, "Antireflective Subwavelength Structures on Crystalline Si Fabricated Using Directly Formed Anodic Porous Alumina Masks", Applied Physics Letters, 88, 201116-201111-3, (2006).
[6.4] Martin A. Green著, 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用”, 五南圖書出版有限公司, pp. 102~105, (2009).
[6.5] M. A. Green, “General solar cell curve factors including the effects of ideality factor, temperature and series resistance”, Solid-State Electronics, 20, 265-266, (1977).