跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王加和
Chia-he Wang
論文名稱: 考量基板旋轉效應之適應性光學輔助濺鍍白金薄膜及奈米纖維墊表面粗糙度量測系統
Adaptive optics integrated surface roughness measurement of sputtered Pt film and electrospun nanofibrous mat considering the substrate rotation effect
指導教授: 傅尹坤
Yiin-kuen Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 適應性光學表面粗糙度白金薄膜
外文關鍵詞: adaptive optics, surface roughness, PT thin film
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是結合適應性光學系統和二值化定理來量測表面粗糙度及增進準確性。本論文研究主要為下列三大部份,(1) 利用適應性光學系統輔助量測矽基底白金薄膜表面粗糙度,(2) 適應性光學系統結合二值化影像輔助旋轉表面之表面粗糙度量測,(3) 即時光學量測方法探討遠場電紡織過程纖維孔隙率變化。
    (1) 利用適應性光學系統輔助矽基底白金薄膜表面粗糙度量測:
    本研究中,我們提出一個結合光學散射原理和適應性光學系統,可應用於動態表面粗糙度的即時量測方法。本研究的目的主要是要將有氣體擾動的區域所造成的像差利用適應性光學系統做補償。 本研究共使用四組白金薄膜試片,粗糙度範圍從58至83奈米,量測結果其光強度值和表面粗糙度值表現出良好的相關性其相關係數高達0.9963。
    (2) 適應性光學系統結合二值化影像量測旋轉表面之表面粗糙度:
    本文將光學量測技術應用在轉速高達1500rpm之旋轉表面的薄膜基板的表面粗糙度之研究。光學量測方法因旋轉運動的影響,而造成光強度變化和圖像畸變,特別是在圓周區域的速度有著較大影響。因此我們結合適應性光學系統和二值化影像分析,提出了一個即時表面粗糙度的量測方法。利用適應性光學系統輔助校正結果與靜止條件相比較,誤差值可小於3.05%,且在量測前後可以得到較好的一致性。
    (3) 即時光學量測方法探討遠場電紡織過程纖維孔隙率變化:
    本研究主要探討遠場電紡織技術過程中,結合光學量測方法及二值化影像比較法,推算遠場電紡織纖維沉積過程的孔隙率之研究。由研究結果顯示此量測方法,以量測角度為45°的入射角可得到最好的量測結果,且可以得到一條曲線方程式 y=188.19x2+13.103x+0.2506,可用來做為預測孔隙率與光功率密度相對應之關係式。


    This study is a combination of the optical scattering phenomenon and an adaptive optics system to improve the accuracy of the measurement of surface roughness and porosity. The focus of the study is:
    (1) Adaptive optics integrated surface roughness measurement of sputtered Pt film on silicon substrate:
    In this study, we present an in-process measurement of surface roughness by combining an optical probe of laser-scattering phenomena and adaptive optics for aberration correction. The aim of this study was to demonstrate the necessity for Adaptive Optics (AO) compensation in regions containing turbulences. Measurement results of eight Pt film on top of P-type silicon wafer samples with a roughness ranging from 58 to 83 nm demonstrate excellent correlation between the peak power and average roughness with a correlation coefficient (R2) of 0.9963. The proposed AO-assisted system is in good agreement with stylus method and less than 0.70 % error values are obtained for the aforementioned average sample roughness.
    (2) In-situ roughness measurement on rotationally moving surfaces using binarized image and adaptive optics:
    In this article, an optical technique which allows the roughness measurement of sputtered thin film on silicon surface under high rotational speed up to 1500rpm was developed. The rotationally moving effect hinders most in-situ optical inspection methods due to the induced disturbance and image aberration, particularly in the circumferential region where the speed reaches the maximum. We present an in-situ measurement of surface roughness that is combining on adaptive optics (AO) and binary analysis of speckle pattern images. The proposed AO-assisted system is in good agreement with the still condition and less than 3.05% error values can be consistently obtained.
    (3) An in-situ optical method for monitoring electrospinning process and porosity characterization:
    In this paper, an in-situ analysis based method for electrospun nanofiber porosity measurement has been presented. An optical inspection system for rapidly measuring the porosity of electrospinning process is developed in this study. It is found that the incident angle of 45o is a good candidate for measuring porosity of electrospinning process and y = 188.19x2 + 13.103x + 0.2506 is a trend equation for predicting the porosity of electrospinning process.

    中文摘要 i 英文摘要 iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 表面粗糙度量測 1 1.2適應性光學 4 1.3 研究動機 6 1.4 論文架構 8 第二章 實驗設備與規劃 9 2.1 實驗設備 9 2.2 實驗設計與量測系統架構 18 第三章 適應性光學系統輔助量測矽基底白金薄膜之表面粗糙度 19 3.1導論 19 3.2量測裝置設計與架構 20 3.3適應性光學系統輔助表面粗糙度量測 23 3.4 結果與討論 24 3.5 小結 29 第四章 適應性光學系統結合二值化影像量測旋轉表面之表面粗糙度 30 4.1 導論 30 4.2實驗設計與架構 31 4.3實驗結果與討論 34 4.4 小結 41 第五章 探討遠場電紡織過程纖維孔隙率變化之即時光學量測方法 42 5.1 導論 42 5.2實驗設計與架構 44 5.3 實驗結果與討論 48 5.4 小結 52 第六章 結論 53 參考文獻 55

    [1] R.E. Reason, “Progress in the appraisal of surface topography during the first half-century of instrument development ”, Wear, Vol 57, pp. 1-16, 1979.
    [2] D.J. Whitehouse, “Stylus contact method for surface metrology in the ascendancy ”, Meas. Control, Vol 31, pp. 48-50, 1998.
    [3] A. López, D. Acosta, AI. Martínez and J. Santiago, “Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity ”, Powder Technol., Vol 202, pp. 111-117, 2010.
    [4] H. Toupet, F. Marrec Le, J. Holc, M. Kosec, P. Vilarhino and M.G. Karkut, “Growth and thermal stability of epitaxial BiFeO3 thin films ”, J. Magn. Magn. Mater., Vol 321, pp. 1702-1705, 2009.
    [5] Y. Masuda, T. Sugiyama, H. Lin, W.S. Seo and K. Koumoto, “Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers ”, Thin Solid Films, Vol 382, pp.153-157, 2001.
    [6] D.J. Whitehouse, Comparison between stylus and optical methods for measuring surfaces, Ann. CIRP , Vol 37, pp.649–653, 1988.
    [7] Y.C. Shin, S.J. Oh, S.A. Coker, Surface roughness measurement by ultrasonic sensing for in-process monitoring, Trans. ASME J. Eng. Ind. , Vol 117 , pp.439–447, 1995.
    [8] R. Brodmann, O. Werke, G. Rodenstock, An optical instrument for measuring the surface roughness in production control, Ann. CIRP, Vol 33, pp.403–406 , (1984).
    [9] H. J. Tiziani, “Optical methods for precision measurements ”,Opt. Quant. Electron., Vol 21, pp. 253-282, 1989.
    [10] U. Persson, “Real time measurement of surface roughness on ground surfaces using speckle-contrast technique”, Opt. Las. Eng., Vol 17, pp. 61-67, 1992.
    [11] U. Persson, “Measurement of surface roughness on rough machined surfaces using spectral speckle correlation and image analysis ”, Wear, Vol 160, pp. 221-225, 1993.
    [12] P.L. Wong and K.Y. Li, “In-process roughness measurement on moving surfaces ”, Opt. Laser Technol., Vol 31, pp. 543-548, 1999.
    [13] C.J. Tay, S.H. Wang, C. Quan, and H.M. Shang, “In situ surface roughness measurement using a laser scattering method ”, Opt. Commun. Vol 218, pp. 1-10, 2003.
    [14] L. C. Leonard and V. Toal,“Roughness measurement of metallic surfaces based on the laser speckle contrast method,”Optics and Lasers in Engineering, Vol 30, pp. 433-440, 1998.
    [15] E. Kayahan, H. Oktem, F. Hacizade, H. Nasibov, and O. Gundogdu, “Measurement of surface roughness of metals using binary speckle image analysis ”, Tribol. Int., Vol 43, pp. 307-311, 2010.
    [16] L. C. Leonard, V. Toal, “Roughness measurement of metallic surfaces based on the laser speckle contrast method ”, Opt. Lasers Eng., Vol 30, pp. 433-440, 1998.
    [17] H.W. Babcock, “The possibility of compensating astronomical Seeing ”, Publ. Astron. Soc. Pac., Vol 65, pp. 229-236, 1953.
    [18] S.R. Restaino, J.R. Andrews, T. Martinez, F. Santiago and D.V.Wick, “Adaptive optics using MEMS and liquid crystal devices ”, J. Opt. A-Pure Appl. Opt., Vol 10, 064006(5pp), 2008.
    [19] 葉玉堂、饒建珍、肖峻,幾何光學,五南圖書,台北市,民國九十七年。
    [20] S.H. Baik, S.K. Park, C.J. Kim and B. Cha, “A center detection algorithm for Shack-Hartmann wavefront sensor ” , Opt. Las. Technol., Vol 39, pp. 262-267, 2007.
    [21] Q. Mu, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye ”, Opt. Lett., Vol 15, pp. 1946-1953, 2007.
    [22] L.A. Thompson, “Adaptive Optics in Astronomy ” , Phys. Today, Vol 47, pp. 24-31, 1994.
    [23] J.M. Girkin, S. Poland and A. J. Wright, “Adaptive optics for deeper imaging of biological samples ”, Curr. Opin. Biotechnol., Vol 20, pp. 106-110, 2009.
    [24] C. Li, M. Xia, B. Jiang, Q.Mu, S.Chen and L. Xuan, “Retina imaging system with adaptive optics for the eye with or without myopia ”, Opt. Commun., Vol 282, pp.1496-1500, 2009.
    [25] T. Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging ”, Appl. Optics, Vol 4, pp.4013-4023 2002.
    [26] Y.K. Fuh, K.C. Hsu, M.X. Lin and J.R. Fan, “Adjustable fluidic lenses for correcting piston/defocus/astigmatism aberrations induced by mems deformable mirrors ”, Microw. Opt. Technol. Lett., Vol 54, pp. 1701-1705 2012.
    [27] Y.K. Fuh, K.C. Hsu, M.X. Lin and J.R. Fan, “Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astimatism ”, Optik-Int. J. Light Electron Opt. 2012.
    [28] Y.K. Fuh and M.X. Lin ,“Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astimatism ”, Opt. Commun., 2013 Accepted.
    [29] Y.K. Fuh, K.C. Hsu and J.R. Fan, “Roughness measurement of metals using a modified binary speckle image and adaptive optics ”, Opt. Las. Eng., Vol 50, pp.312-316, 2012.
    [30] Y.K. Fuh, K.C. Hsu and J.R. Fan, “Rapid in-process measurement of surface roughness using adaptive optics ”, Opt. Lett., Vol 37, pp. 848-50, 2012.
    [31] Y.K. Fuh and C.H. Wang, “Adaptive optics integrated surface roughness measurement of sputtered Pt film on silicon substrate”, Microw. Opt. Technol. Lett., Vol.55, pp. 2055-2059, 2013.
    [32] Y.K. Fuh and J.R. Fan, “ Experimental investigation of a flowing fluid layer on metal surface roughness measurement and aberration correction using adaptive optics ”, Opt. Rev., 2013 Accepted.
    [33] Thorlabs,“Adaptive Optics 101: Overview, Tech Review, And Applications,” http://www.thorlabs.hk/images/TabImages/AO_101_White_Paper.pdf
    [34] K.M. Hamson, “ Adaptive Optics and vision,” J. Mod. Optic, Vol 55, pp. 3425-3467, 2008.
    [35] Thorlabs, “Adaptive Optics Kit User guide ”, http://www.thorlabs.com/Thorcat/18100/18182-D02.pdf
    [36] J. E. Lim, J. K. Jeong, K. H. Ahn, H. J. Kim, C. S. Hwang, "Microstructural characterization of sputter-deposited Pt thin film electrode," J. Mater. Res., Vol. 19, No. 2, 2004
    [37] M. A. Younis, " On Line Surface Roughness Measurements using image processing towards an adaptive control," Computers ind. Eng ,Vol. 35, pp. 49-52, 1998.
    [38] K I Jolic, C R Nagarajah, W Thompson, " Non-contact, optically based measurement of surface roughness of ceramics," Meas. Sci, Technol. , Vol.5, pp.671-684, 1994.
    [39] S. Wang, Y. Tian, C. J. Tay, C. Quan, " Development of a laser-scattering-based probe for on-line measurement of surface roughness.," Appl. Opt. ,Vol. 42, pp.1318-1324 , 2003.
    [40] L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, T. K. Lee, "Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile," Opt. Las. in Eng., Vol. 48, pp.774-778, 2010.
    [41] U. Persson, "Surface roughness measurement on machined surfaces using angular speckle correlation," J. Mater. Process. Technol., Vol. 180, pp.233-238, 2006.
    [42] K. C. Hsu, Y. K. Fuh, "A Novel In Situ Roughness Measurement Based on Spatial Average Analysis of Binary Speckle Image," Adv. Mat. Res., Vol. 154, pp.1125-1130, 2011.
    [43] C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, K. C. Chan, "Surface roughness investigation of semi-conductor wafers," Opt. Las. Technol., Vol. 36, pp.535-539,(2004).
    [44] C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, J. Lin, Z. Liu, "37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory," Chin. Opt. Lett., Vol. 8, pp.966-968, 2010.
    [45] G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao, Y. Zhang, "Adaptive optics optical coherence tomography for retina imaging," Chin. Opt. Lett., Vol. 6, pp.424-425, 2008.
    [46] C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, P. Artal, "Hybrid adaptive-optics visual simulator," Opt. Lett., Vol. 35, pp.196-198, 2010.
    [47] Y. K. Fuh, K. C. Hsu, M. X. Lin, J. R. Fan, ,M X. Lin,” Induced aberrations by combinative convexconcave interfaces of refractive-index-mismatch and capability of adaptive optics correction”, Microw. Opt. Technol. let., Vol. 53 , pp.2610-2615, 2011.
    [48] H. Y. Kim, Y. F. Shen, J. H. Ahn, "Development of a surface roughness measurement system using reflected laser beam," J. Mater. Process. Technol., Vol. 130-131, pp.662-667, 2002.
    [49] C. Kuo and C. Chao, "Rapid optical measurement of surface roughness of polycrystalline thin films," Opt. Las. in Eng., Vol. 48, pp.1166-1169, 2010.
    [50] C. Kuo and Y. Chen, "A new method to characterizing surface roughness of TiO2 thin films," Opt. Las. in Eng., Vol. 49, pp.410-414, 2011.
    [51] Wang W, Wong PL, Luo JB, Zhang Z. "A new optical technique for roughness measurement on moving surface, " Tribo. Int. , Vol. 31, pp.281, 1998.
    [52] C. Kuo. "Surface roughness characterization of Al-doped zinc oxide thin films using rapid optical measurement, " Opt. Las. in Eng., Vol. 49, pp.829-832, 2011.
    [53] Luo, J. B., Wen, S. Z. and Huang, P. "Thin film lubrication. Part I: The transition between EHL and thin film lubrication, " Wear, Vol. 194, pp.107–115, 1996.
    [54] P. Huang, JB Luo, S. Wen, "Nano-film thickness measuring apparatus NGY-2 (in Chinese), " J. Tribol., Vol.14, pp.175–179,1994.
    [55] L. Xian, L. Zheng, "A new method for the experimental investigation of contacts in mixed lubrication, " Wear, Vol.132, pp.221–233, 1989.
    [56] Whitehouse D J 2003 Handbook of Surface and Nanometrology (Bristol: Institute of Physics Publishing)
    [57] M. Hattori, S. Komatsu. "Real-time Adaptive Optics with a Twisted Nematic Liquid Crystal Light Modulator Controlled by the Wave Front Reconstruction Sensor". Opt. Rev., Vol. 9, pp.126-31, 2002.
    [58] Y. K. Fuh, M. X. Lin, S. Lee, Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,"Opt. Las. in Eng., Vol. 50 , pp.1677-1682, 2012.
    [59] Y. K. Fuh, M. X. Lin, " Adaptive optics correction of a tunable fluidic lens for ophthalmic applications, " Opt. Commun., 2013, Accepted.
    [60] T. Kowalewski, S. NSKI and S. Barral, "Experiments and modelling of electrospinning process," Tech. Sci., Vol. 53, 2005.
    [61] F. L. Zhou, R. H. Gong , I. Porat, "Needle and needleless electrospinning for nanofibers,"J Appl. Polym. Sci., Vol.115, pp.2591, 2010.
    [62] K. Gao, X. Hu, C. Dai and T. Yi, "Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells," Mat. Sci. Engin.:B, Vol. 131, pp.100, 2006.
    [63] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran and S. Gopukumar, " LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell," Appl. Phys. A, Vol.97, pp. 811, 2009.
    [64] D. Li, M. W. Frey, Y. L. Joo, " Characterization of nanofibrous membranes with capillary flow porometry," J. of Mem. Sci., Vol. 286, pp.104–114, 2006.
    [65] M. Ziabari, V. Mottaghitalab, S. T. McGovern, A. K. Haghi, " A New Image Analysis Based Method for Measuring Electrospun Nanofiber Diameter," Nanoscale Res. Lett., Vol. 2, pp.597–600, 2007.

    QR CODE
    :::