| 研究生: |
陳建中 Chien Chung Chen |
|---|---|
| 論文名稱: |
使用功率結合變壓器功率放大器與反E類開關式功率放大器研製 Implementations on Power Amplifiers Using Power-Combining Transformer and Inverse Class ESwitch Mode Techniques |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 功率放大器 |
| 外文關鍵詞: | Power Amplifier |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用TSMC 0.18-?m CMOS製程設計功率放大器,在設計上分成兩部份,第一部份為以全積體化CMOS功率放大器為目標,使用功率結合技術,設計三個高功率輸出功率放大器,而第二部份功率放大器則是以高效率為設計方向,架構以反E類為主。
各電路特性量測如下:採用功率結合變壓器技術之功率放大器,增益量測為13.6 dB,輸入回返損耗約為10.6 dB,輸出回返損耗約為6.42 dB,1-dB增益壓縮點輸出功率為25.8 dBm,效率為17.2 %;Figure 8功率結合變壓器之功率放大器,增益量測結果為14.2 dB,輸入回返損耗約為20.4 dB,輸出回返損耗約為3.2 dB,1-dB增益壓縮點輸出功率為24.2 dBm,效率為14.7 %;雙級功率結合技術功率放大器,增益量測結果為19.1 dB,輸入回返損耗約為15.7 dB,輸出回返損耗約為7.7 dB,1-dB增益壓縮點輸出功率為12.3 dBm,飽和輸出功率為22.7 dBm,效率為9.1 %;反E類功率放大器,增益量測結果為19.4 dB,輸入回返損耗約為12.5 dB,輸出回返損耗約為2.66 dB,1-dB增益壓縮點輸出功率為20.8 dBm,效率為30.4 %。
This thesis presents CMOS power amplifier (PA) implemented in 0.18 ?m CMOS technology. The implemented circuits include two PA categories. The first category is target for the fully integrated CMOS PA design, three power amplifiers using power-combining transformer are presented, The second category is target for high-efficiency power amplifier which is based on the 反E類 switch technique.
The measured results are summarized as below, the PA with power-combining transformer technique achieves a power gain of 13.6 dB with input and output return losses of 10.6 dB and 6.42 dB, a 1-dB gain compression point (P1dB) of 25.8 dBm, a power added efficiency (PAE) at P1dB of 17.2 %. The PA with figure 8 power-combining transformer achieves a power gain of 14.2 dB with input return and output return losses of 20.4 dB and 3.2 dB, a P1dB of 24.2 dBm, a PAE at P1dB of 14.7 %. The PA with two stage power-combining technique achieves a power gain of 19.1 dB with input and output return losses better than 15.7 dB and 7.7 dB, a P1dB of 12.3 dBm, a saturation power of 22.7 dBm, a maximum PAE of 9.1%. The PA with inverse class E achieves a power gain of 19.4 dB with input and output return loss of 12.5 dB, and 2.66 dB, a P1dB of 20.8 dBm, a PAE at P1dB of 30.4 %.
[1] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[2] Haldi, P.; Debopriyo Chowdhury, Liu, G.; Niknejad, A.M., “A 5.8 GHz Linear Power Amplifier in a Standard 90nm CMOS Process using a 1V Power Supply”, IEEE Radio Frequency Integrated Circuits Symposium, 2007, pp. 431-434.
[3] Park, C.; Lee, D. H.; Han, J.; Hong, S.” Tournament-Shaped Magnetically Coupled Power-Combiner Architecture for RF CMOS Power Amplifier”, IEEE Trans. Microw. Theory Tech, Vol. 55, Issue 10, pp.2034-2042, Oct. 2007.
[4] J. R Long, Member, ”Monolithic transformers for silicon rfic design,” IEEE Journal of Soild-State Circuits, Vol. 35, No. 9, September 2000.
[5] Cheng-Chi Yen; Huey-Ru Chuang; “A 0.25-/spl mu/m 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer”,IEEE Microwave and Wireless Components Letters, Vol. 13, Issue 2, pp. 45-47, Feb 2003.
[6] TSMC Taiwan Semiconductor Manufacturing Co., LTD Document No. TA-10A5-4001 (T-018-LO-DR-001)
[7] Gang Liu; Haldi, P.; Tsu-Jae King Liu; Niknejad, A.M.,” Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off”, IEEE Journal of Solid-State Circuits, Vol.43, Issue 3, pp 600-609, March 2008.
[8] Hanington, G.; Pin-Fan Chen; Asbeck, P.M.; Larson, L.E.; “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications”, IEEE Trans. Microwave Theory Tech., Vol. 47, Issue 8, pp.1471-1476, Aug. 1999
[9] Iwamoto, M.; Williams, A.; Pin-Fan Chen; Metzger, A.G.; Larson, L.E.; Asbeck, P.M., “An extended Doherty amplifier with high efficiency over a wide power range”, IEEE Trans. Microwave Theory Tech., Vol. 49, Issue 12, pp.2472 – 2479, Dec. 2001.
[10] Hau, G.; Nishimura, T.B.; Iwata, N.; “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions”, IEEE Trans. Microwave Theory Tech., Vol. 49, Issue 6, pp. 1194-1201, June 2001.
[11] Sowlati, T.; Salama, C.A.T.; Sitch, J.; Rabjohn, G.; Smith, D.; “Low voltage, high efficiency GaAs Class E power amplifiers for wireless transmitters”, IEEE Journal of Solid-State Circuits, Vol. 30, Issue 10, pp.1074 – 1080, Oct. 1995.
[12] Mader, T.B.; Popovic, Z.B.; “The transmission-line high-efficiency class-E amplifier”, IEEE Microwave and Wireless Components Letters, Vol. 5, Issue 9, pp.290 – 292, Sept. 1995
[13] Ichiro Aoki, Scott D.Kee, David B, and Ali Hajimiri, “Distributed active transformer-a new power combining and impedance-transformation technique,” IEEE Microwave Theory and Techniques, Vol. 50, pp.316-331, Jan. 2002.
[14] Y. Kim; B.H. Ku, C. Park, D. H. Lee, S. Hong, “A High Dynamic Range CMOS RF Power Amplifier with a Switchable Transformer for Polar Transmitters,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp. , pp.737 – 740, June 2007.
[15] K. H. An, Y. Kim, O. Lee, K. S. Yang, H. Kim, W. Woo, J. J. Chang, C.H. Lee, H. Kim, Laskar, J., “A Monolithic Voltage-Boosting Parallel-Primary Transformer Structures for Fully Integrated CMOS Power Amplifier Design,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp.419-422, June 2007 .
[16] Jongchan Kang; Hajimiri, A.; Bumman Kim; ”A single-chip linear CMOS power amplifier for 2.4 GHz WLAN”, IEEE ISSCC Dig. Tech. Papers, pp. 761-769, Feb. 2006.
[17] Chen, Y.-J.E.; Liu, C.-Y.; Luo, T.-N.; Heo, D.; “A High-Efficient CMOS RF Power Amplifier With Automatic Adaptive Bias Control”, IEEE Microwave and Wireless Components Letters, Vol. 16, Issue 11, pp. 615-617, Nov. 2006.
[18] Elmala, M.; Paramesh, J.; Soumyanath, K.; “A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion”, IEEE J. Solid-State Circuits, Vol.41, Issue 6, pp.1323-1332, June 2006.
[19] C.-H. Lin, Y.-K. Su, Y.-Z. Juang, C.-F. Chiu, S.-J. Chang, J. F. Chen, C.-H. Tu, “The Optimized Geometry of the SiGe HBT Power Cell for 802.11a WLAN Applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 49–51, Jan. 2007.
[20] Y. S. Noh and C.S. Park, “PCS/W-CDMA Dual-Band MMIC Power Amplifier with a Newly Proposed Linearizing Bias Circuit,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1096–1099, Sept. 2002.
[21] Hanington, G.; Pin-Fan Chen; Asbeck, P.M.; Larson, L.E.; “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications”, IEEE Trans. Microwave Theory Tech., Vol. 47, Issue 8, pp.1471-1476, Aug. 1999
[22] Chen, Y.-J.E.; Liu, C.-Y.; Luo, T.-N.; Heo, D.; “A High-Efficient CMOS RF Power Amplifier With Automatic Adaptive Bias Control”, IEEE Microwave and Wireless Components Letters, Vol. 16, Issue 11, pp. 615-617, Nov. 2006.
[23] Jongchan Kang; Jehyung Yoon; Kyoungjoon Min; Daekyu Yu; Joongjin Nam; Youngoo Yang; Bumman Kim; “A highly linear and efficient differential CMOS power amplifier with harmonic control”, IEEE Journal of Solid-State Circuits, Vol. 41, Issue 6, pp.1314 – 1322, June 2006
[24] Yongwang Ding; Harjani, R.; “A CMOS high efficiency +22 dBm linear power amplifier”, IEEE Custom Integrated Circuits Conference, pp.557 -560, Oct. 2004
[25] Singh, Rimal Deep; Yu, Kyung-Wan; “A Linear Mode CMOS Power Amplifier with Self-Linearizing Bias”, 2006 IEEE Asian Solid-State Circuits Conference, pp.251-254, Nov. 2006
[26] Kang, J.; Yu, D.; Min, K.; Kim, B.; ” A Ultra-High PAE Doherty Amplifier Basedon 0.13-$mu$m CMOS Process”, IEEE Microwave and Wireless Components Letters, Vol. 16, Issue 9, pp.505 – 507, Sept. 2006
[27] Heydari, B.; Bohsali, M.; Adabi, E.; Niknejad, A.M.;”A 60 GHz Power Amplifier in 90nm CMOS Technology”, 2007 IEEE Custom Integrated Circuits Conference, pp.769-772, 16-19 Sept. 2007
[28] M. Tanomura, et. Al., “TX and RX Front-Ends for the 60GHz Band in 90nm Standard Bulk CMOS,” To be published ISSCC, February, 2008.
[29] Wicks, B.; Skafidas, E.; Evans, R.; “A 60-GHz fully-integrated Doherty power amplifier based on 0.13-μm CMOS process”, IEEE Radio Frequency Integrated Circuits Symposium, pp.69-72 June 17 2008.
[30] Terry Yao; Gordon, M.Q.; Tang, K.K.W.; Yau, K.H.K.; Ming-Ta Yang; Schvan, P.; Voinigescu, S.P.; “Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio”, IEEE Journal of Solid-State Circuits, Vol. 42, Issue 5, pp.1044-1057, May 2007.
[31] D. Chowdhury, et al., “A 60GHz 1v +12.3dBm Transformer-Coupled Wideband PA in 90 nm CMOS,” To be published ISSCC, February, 2008.
[32] LaRocca, T.; Chang, M.-C.F.; “60GHz CMOS differential and transformer-coupled power amplifier for compact design”, IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 65-68, June 17 2008.
[33] Elmala, M.; Paramesh, J.; Soumyanath, K.; “A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion” , IEEE J. Solid-State Circuits, Vol.41, Issue 6, pp.1323-1332, June 2006.
[34] Wei-Chun Hua; Hung-Hui Lai; Po-Tsung Lin; Chee Wee Liu; Tzu-Yi Yang; Gin-Kou Ma; “High-linearity and temperature-insensitive 2.4 GHz SiGe power amplifier with dynamic-bias control”, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symp., pp. 609-612, June 2005 .
[35] Ji Hoon Kim; Ki Young Kim; Seung Hwan Won; Jae Jin Lee; Yun Hwi Park; Yul Kyo Jung; Seok Tae Kim; Chul Soon Park;, “Impedance optimization of linearizer to suppress intermodulation distortion in 2.45GHz SiGe WLAN power amplifier”, 2006 IEEE Radio Frequency integrated Circuits (RFIC) Symp., pp.4 June 2006.
[36] 林貴成,“應用於寬頻劃碼多工進接系統及無線區域網路線性補償功率放大器之研製”, 中央大學,碩士論文, 2005。
[37] 陳致宏,“微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控震盪器電路之研製”, 中央大學,碩士論文, 2007。
[38] 呂紹良,“微波存取全球互通頻段變壓器耦合式功率放大器與電壓控制振盪器暨除頻器之研製”, 中央大學,碩士論文, 2008。