| 研究生: |
宋文旭 Wen-Hsu Sung |
|---|---|
| 論文名稱: |
醫療影像重建與手術模擬系統之研究 3D Reconstruction via Medical Images and Laparoscopic Surgery Simulation System |
| 指導教授: |
董基良
Ji-Liang Doong |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 201 |
| 中文關鍵詞: | 虛擬實境 、模型重建 、體積計算 、手術模擬 、系統驗證 |
| 外文關鍵詞: | 3-D reconstruction, volume estimation, system verification, laparoscopic surgery simulation, virtual reality |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合虛擬實境技術,發展一可由電腦斷層或核磁共振等醫療影像,重建選取區域之3D模型,並提供高準確度體積計算之系統。完成開發程序後並設計相關之驗證實驗,將數個已知外觀與體積之塑膠人體器官模型,實際進行核磁共振造影,以進行各模型之外觀重建與體積計算測試。由測試結果可以發現,各模型之3D外觀重建結果與真實外觀非常近似,而體積計算結果亦與各模型以排水法量測所得之體積數值相當接近。
完成體積計算結果準確性之實驗驗證後,接著與國內某醫學中心合作,以三種不同的體積計算方式,包含單一最大徑、橢圓法與本研究之方法,進行腫瘤體積與各項子宮頸癌預後因子之相關性實驗。由實驗結果可以發現,以本研究之方式計算腫瘤體積,較其他兩種傳統的方法,可以提供更準確的子宮頸癌的骨盆淋巴節轉移與否、是否有子宮旁側軟組織侵犯與腫瘤細胞分化狀況之初步預估。
本研究並以虛擬實境技術,開發設計一腹腔鏡手術模擬訓練系統,可進行雙極電燒輸卵管結紮手術之全程模擬訓練。在完成系統之開發工作後,並規劃了學習性、信度與不同訊息回饋對使用者學習成效影響之相關驗證實驗。由學習性實驗結果可以得知,模擬系統具備可學習性,受試者在經過8次的練習後,其操作行為將可達到一熟練穩定的狀態。由信度實驗結果可以得知,讓同一批受試者在經過學習性實驗後約7至14天,再進行相同的測試,實驗結果數據與學習性實驗相當接近,由此可證明本系統具備信度,不會因操作時間的改變而導致不同的結果。而由不同訊息回饋對使用者學習成效影響之實驗可以發現,以文字、音效與輔助側視圖三種不同的訊息回饋方式,對使用者之平均操作時間、平均錯誤次數與平均夾合次數皆可產生顯著的影響。
最後則將已開發之腹腔鏡手術模擬訓練系統進行功能擴充,整合具備力回饋功能之模擬手術刀具,並設計腹腔鏡頭之模擬操控方式,以期可以提供使用者更接近真實腹腔鏡手術過程之模擬操作情境。完成系統功能之擴充改善工作後,隨後並再以學習性、信度與不同訊息回饋實驗進行使用者之操作行為與學習成效之驗證實驗。由學習性與信度實驗結果可以發現,經功能擴充後的模擬系統具備學習性與可信度;然而,模擬系統新增之力回饋與腹腔鏡頭模擬操控功能,因訊息功能本身設計與實驗規劃之緣故,對使用者之學習成效指標,包含平均操作時間、平均錯誤次數與平均夾合次數等等,並無產生顯著之影響。
The study integrated virtual reality technology and developed a system which would reconstruct three-dimensional (3-D) models and provide highly accurate volume estimations from selected areas of medical images. After development processes, we devised an experiment to test and verify the results of 3-D reconstruction and volume estimations. The experiment result showed that the appearances of reconstruction models were very similar to the real ones, and the value of volume estimations were very close to the values evaluated by drainage.
After verifying the accuracy of volume estimations, another clinical experiment was implemented. Three kinds of tumor volume estimations, including the single maximum diameter method, ellipse method and our 3-D integration method, were performed and the relationship of these volume estimations among associated cervical cancer prognostic parameters was evaluated.This study found that the parameters of lymph nodes metastasis, parametrial involvement and tumor differentiation are volume dependent. 3D-tumor volumetry showed superior discrimination of these parameters than current single maximum diameter evaluation suggesting its potential as a rapid method for initial prediction of prognostic factors in cervical cancer.
In this study, a virtual reality-based simulator system was developed for extensive laparoscopic surgery training. The purpose of this study is to assess the feasibility of virtual reality-based laparoscopic gynecology simulation system. Ten healthy, non-disabled volunteers were recruited. The surgical procedure is a process of tubal sterilization by cauterization. Volunteers followed the training procedure fifteen trials in the first test and retest respectively. Stable performances were obtained after about eight trials for all subjects. The results of this study indicate that the system is stable and the system has fair high test-retest reliability.
Another thirty two non-disabled volunteers were recruited for participating in the different signal feedback experiment. The purpose of this experiment is to assess the influence of text, sound and lateral view cues on the manipulation performance in the system. The average of task time, error times and clip times are the parameters used to evaluate the manipulation performance. It can be concluded that all of the text, sound and lateral view cues are significant cues of manipulation performance of this simulation system.
Finally, we employed another laparoscopic gynecology simulating device with force feedback functions, and devised a new function of changing the field of view of laparoscope camera for enhancing the capability of this simulation system. The feasibility and different signal feedback experiments were executed again. The results of the experimants indicate that the new system is stable and has fair high test-retest reliability. Because of the effects of the functions and design of this experiment, the experiment results shows that the new functions, including both force feedback and changing the field of view of laparoscope camera, are not significant cues of manipulation performance of this simulation system.
1.C. C. Yuan, P. H. Wang and H. T. Ng, “Recurrent and Survival Analysis of 1115 Cervical Cancer Patients Treated with Radical Hysterectomy,” Gynecol. Obstet. Invest., Vol. 47, pp.127-132, 1999.
2.P. H. Wang, C. H. Liu and C. C. Yuan, “Immediate Repair of Intestinal Injury during Laparoscopically Assisted Vaginal Hysterectomy,” Chung Hua I Hsueh Tsa Chih - Chinese Medical Journal, Vol. 63, Issue 2, pp.148-152, February 2000.
3.J. Y. Tseng and P. H. Wang, “Delayed Onset of Intestinal Injury after Laparoscopic Assisted Vaginal Hysterectomy : a Case Report,” Kaohsiung I Hsueh Ko Hsueh Tsa Chih - Kaohsiung Journal of Medical Sciences, Vol. 15, Issue 12, pp.715-719, December 1999.
4.M. Dixon and E. H. Carrillo, “Iliac Vascular Injuries during Elective Laparoscopic Surgery,” Surgical Endoscopy, Vol. 13, Issue 12, pp.1230-1233, December 1999.
5.Health and Public Policy Committee of the American College of Physician, “Clinical Competence in Diagnostic Esophagogastroduodenoscopy,” Ann. Intern. Med., Vol. 107, pp.937-939, 1987.
6.Health and Public Policy Committee of the American College of Physician, “Clinical Competence in Diagnostic Endoscopic Retrograde Cholangiopancreatography,” Ann. Intern. Med., Vol. 107, pp.142-144, 1987.
7.Microsoft Corporation, Windows Family Home Page, January 2003, http://www.microsoft.com/windows/default.mspx.
8.Microsoft Corporation, Visual Studio Home Page, January 2003, http://msdn.microsoft.com/vstudio/.
9.楊崇謨,“肝臟斷層影像的電腦處理技術”,碩士論文,國立成功大學,民國83年。
10.王騰毅,“立體髖骨影像處理系統及其在定量量測與手術模擬之應用”,碩士論文,國立成功大學,民國84年。
11.劉育寰,“多種類醫學影像立體重構、登錄與融合之研究”,碩士論文,國立成功大學,民國86年。
12.張文彥,“直接運用體素之三維變形與貼圖技術”,碩士論文,國立成功大學,民國89年。
13.張財榮,“可模擬精確外科手術的容積操作演算法”,碩士論文,國立成功大學,民國88年。
14.林俊杰,“虛擬實景之遊走及其醫學影像上的應用”,碩士論文,國立成功大學,民國84年。
15.楊麗娟,“三維醫學影像模組的設計與描繪系統”,碩士論文,私立逢甲大學,民國85年。
16.戴逸棠,“三維醫學影像模組的設計與描繪系統”,碩士論文,私立逢甲大學,民國86年。
17.鄧安成,“可模擬精確外科手術的容積操作演算法”,碩士論文,私立中原大學,民國84年。
18.張傑智,“為達虛擬實境環境下之即時互動目的之容積顯像演算法”,碩士論文,私立中原大學,民國88年。
19.石明于,“外科手術模擬系統中的模型切割及重塑”,碩士論文,國立中央大學,民國86年。
20.劉豐明,“三維醫學影像的重建和使用VRML展示之研究”,碩士論文,私立逢甲大學,民國86年。
21.李建德、張祈順、李石增與張永成,“腦部基底核電腦圖譜立體重建之研究”,中華醫學工程學刊,民國88年。
22.劉豐源,“核磁共振膽道造影之分析與重構”,碩士論文,國立成功大學,民國85年。
23.邱仲淵,“具多種類影像登錄及合成功能之立體髖關節顯示技術”,碩士論文,國立成功大學,民國85年。
24.V. Spitzer, Health Sciences Center, Colorado University, U. S., January 2003, http://www.uchsc.edu/sm/chs/index.html.
25.M. Chang and P. Coddington, Northeast Parallel Architectures Center, Syracuse University, U.S., January 2003,
http://www.npac.syr.edu/projects/vishuman/index.html.
26.J. C. Bessaud, Computer Science Department, Peripheral System Laboratory, Lausanne, Swiss, January 2003, http://visiblehuman.epfl.ch/index.html.
27.P. A. Warrick and W. R. Funnell, “A VRML-based Anatomical Visualization Tool for Medical Education,” Information Technology in Biomedicine, IEEE Transactions, Vol. 22, pp.55-61, 1998.
28.胡勝容,“運用有限元素模組之電腦模擬顱顏整型手術”,碩士論文,國立成功大學,民國89年。
29.詹登貴,“虛擬實境技術在內視鏡手術模擬上的應用”,碩士論文,國立成功大學,民國87年。
30.溫欣華,“全球資訊網上虛擬實境環境下操作容積的手術模擬系統”,碩士論文,私立中原大學,民國88年。
31.王孝愷,“虛擬實境之骨骼肌肉手術的模擬系統”,碩士論文,私立中原大學,民國88年。
32.陳欣沛,“腹腔鏡膽囊切除手術模擬系統”,碩士論文,國立中央大學,民國89年。
33.王世興,“腹腔鏡手術模擬系統用輸入裝置之設計與控制”,碩士論文,國立中央大學,民國88年。
34.彭怡華,“腹腔鏡膽囊手術模擬系統”,碩士論文,國立中央大學,民國88年。
35.李訓銘,“電腦輔助骨科手術用規劃及導引系統”,碩士論文,國立中央大學,民國89年。
36.陳志明,“遠端遙控機械手臂腹腔鏡手術系統”,碩士論文,國立中央大學,民國89年。
37.陳明慶,“肝臟手術切割模擬”,碩士論文,國立中央大學,民國89年。
38. 林俊裕,“腹腔鏡手術模擬系統中的混合式物理變形模塑”,碩士論文,國立中央大學,民國88年。
39.詹彥炳,“腹腔鏡手術模擬系統(三維重建與系統整合)”,碩士論文,國立中央大學,民國86年。
40.李詠逸,“腹腔鏡手術模擬系統(器官擬真模型與輸出入界面)”,碩士論文,國立中央大學,民國86年。
41.U. G. Kühnapfel, “CAD-based Simulation and Modeling for Endoscopic Surgery,” Proceedings SMIT''94; pp.1-4, 1994.
42.U. G. Kühnapfel, “Endosurgery Simulations with KISMET : A Flexible Tool for Surgical Instrument Design, Operation Room Planning and VR Technology Based Abdominal Surgery Training,” Proceedings VR''95 World Conference, pp. 21-23, 1995.
43.S. Gillner, M.O. Schurr, B. Mentges, U. Kühnapfel and G. F. Bueß, “VR Simulation of A Laparoscopic Gall Bladder Removal: Evaluation for Surgical Training,” Proc. 11th Internat. Symp. on Computer Assisted Radiology and Surgery, Berlin, D, pp.565-568, Germany , June 1997.
44.H. K. Çakmak and U. Kühnapfel, “Animation and Simulation Techniques for VR-training Systems in Endoscopic Surgery,” Interlaken/Switzerland, Vol. 21, No. 22, pp.173-185, 2000.
45.U. Kühnapfel, H. K. Çakmak and H. Maass, “Endoscopic Surgery Training Using Virtual Reality and Deformable Tissue Simulation,” Computers & Graphics, No. 24, pp.671-682, 2000.
46.Maelstrom Virtual Productions Ltd, Medical Applications, January 2003, http://www.maelstrom.com/medical.htm.
47.Mentice Corporation, Mentice Medical Simulation, January 2003, http://www.mentice.com/frameset.html.
48.Microvision Inc., Microvision Nomad Personal Display System, January 2003, http://www.mvis.com/prod_nomad.htm.
49.Immersion Corporation, Immersion Medical Overview, January 2003, http://www.immersion.com/products/medical/overview.shtml.
50.Human Interface Technology Lab., Homepage, January 2003, http://www.hitl.washington.edu/.
51.S. Loncaric, “Virtual Reality in Medicine,” Ph. D. Thesis, Electrical Engineering and Computing University, 1999.
52.U. Ecke et. al., “Virtual Reality: Preparation and Execution of Sinus Surgery”, Computer Aided Surgery, Vol. 3, Issue 1, pp.45-50, 1998.
53.S. Gibson, J. Samosky, A. Mor, C. Fyock and E. Grimson, “Simulating Arthroscopic Knee Surgery Using Volumetric Object Representations, Real-time Volume Rendering and Haptic Feedback,” MERL Paper, No.TR96-19, 1996.
54.A. Radetzkya, “Shape Modeling in Virtual Medicine,” Master Thesis, Technical University of Braunschweig, 1999.
55.謝信正,“網際網路建置虛擬環境之研究”,國立中央大學碩士論文,民國89年。
56.A. Bejczy, “State-of-the-art in Remote Manipulation Using Virtual Environment Display,” IEEE Workshop on Force Display on Virtual Environments and its Application to Robotic Teleoperation, Atlanta, GA, May, 1993.
57.Virtual Research Systems, Inc., Virtual Research Systems Glasstron, January 2003, http://www.virtualresearch.com/products/cyvisor.html.
58.StereoGraphics Corporation, Stereo3D Products, January 2003, http://www.stereographics.com/products/body_products.html.
59.ION, ION Design Profile, January 2003, http://iondesign.com/profile.html.
60.IIS, Interactive Imaging Systems, January 2003, http://www.iisvr.com/products_main.html.
61.n-Vision Inc., Products, January 2003, http://www.nvis.com/products.htm.
62.黃德昌,“影像處理與虛擬實境在醫學上的應用”,國立中央大學碩士論文,民國89年。
63.鄭啟英,“虛擬實境在復健之應用”,國立中央大學碩士論文,民國89年。
64.巫靜宜,“比較網路教學與傳統教學對學習效果之研究-以Word 2000之教學為例”,碩士論文,私立淡江大學,民國89年。
65.林素華,“電腦研製視聽媒體對國小自然科教學之效益研究”,碩士論文,國立彰化師範大學,民國80年。
66.簡綜男,“互動式多媒體輔助教材在電腦教學之學習成效影響研究”,碩士論文,國立中央大學,民國88年。
67.洪維新,“電腦輔助透視基礎教學軟體的設計與成效之研究”,碩士論文,私立大同大學,民國89年。
68.D. J. Fishman, “Development and Evaluation of a Computer Assisted Video Module for Teaching Cancer Chemotherapy to Nurses,” Computer in Nursing, Vol. 2, No. 2, pp.16-23, 1984.
69.R. Ward, “Interavtive Video : an Analysis Its Value to Nurse Education,” Nurse Education Today, Vol. 12, pp.464-471, 1992.
70.M. Alavi, B. C. Wheeler and J. S. Valacich, “Using IT to Reengineer Business Education : An Exploratory Investigation of Collaborative Telelearning,” MIS Quarterly, pp.293-311, September 1995.
71.D. R. McIntyre and F. G. Wolff, “An Experiment with WWW Interactive Learning in University Education,” Computer & Education, Vol. 31, pp.255-264, 1998.
72.蔡秀菲,“虛擬實境在網路學習環境之研究:以健康教育為例”,碩士論文,國立交通大學,民國86年。
73.T. Y. Chuang, W. S. Huang, C. P. Fung, I. W. Penn and J. L. Doong, “A Virtual Reality-based System for Hand Function Analysis,” Computer Method and Program in Biomedicine, Accepted August 2001.
74.G. W. Edwards, “Performance and Usability of Force Feedback and Auditory Substitutions in a Virtual Environment Manipulation Task,” Master Thesis, Virginia Polytechnic Institute and State University, 2000.
75.T. H. Naylor and J. M. Finger, “Verification of Computer Simulation Models,” Management Science, Vol. 14, pp.92-101, 1967.
76.R. L. Van Horn, “Validation of Simulation Results,” Management Science, Vol. 17, pp. 247-258, 1971.
77.R. W. Allen, D. G. Mitchell, A. C. Stein and J. R. Hogue, “Validation of Real-time Man-in-the-loop Simulation”, Proceedings of the Conference Strategic Highway Research Program (SHRP) and Traffic Safety on Two Continents in Gothenburg, Sweden, September 1991.
78.W. W. Wierwille and S. A. Connor, “Evaluation on 20 Workload Measures Using a Psychomotor Task In a Moving-base Aircraft Simulator,” Human Factors, Vol. 25, No 1, pp.1-16, 1983.
79.W. W. Wierwille, M. Rahimi and J. G. Casali, “Evaluation of 16 Measures of Mental Workload Using a Simulated Flight Task Emphasizing Mediational Activity,” Human Factors, Vol. 27, No 5, pp.489-502, 1985.
80.J. G. Casali and W. W. Wierwille, “A Comparison Of Rate Scale, Secondary Task, Physiological, and Primary Task Workload Estimation Techniques in a Simulated Flight Task Emphasizing Communication Load,” Human Factors, Vol. 25, No 6, pp.623-641, 1983.
81.J. G. Casali and W. W. Wierwille, “On The Measurement of Pilot Perceptual Workload : A Comparison of Assessment Techniques Addressing Sensitivity and Intrusion Issues,” Ergonomics, Vol. 27, No 10, pp.1033-1050, 1984.
82.J. J. Leonard and W. W. Wierwille, “Human Performance Validation of Simulators:Theory and Experimental Verification”, Proceedings of Human Factors Society 19th Annual Meeting, Santa Monica, C.A., pp.446-456, 1975.
83.Department of Health, Taiwan, R.O.C., “Leading Causes of Death from Cancer, for Female, Taiwan Area, 1991-1997,” January 2003, http://www.doh.gov.tw/english/statistics/c5.xls
84.Department of Health, Taiwan, R.O.C., “Leading Causes of Death from Cancer, for Female, Taiwan Area, 1998,” January 2003, http://www.doh.gov.tw/english/statistics/c6.xls
85.C. J. Chen and S. L. You, “Epidemiology of Cervical Cancer in Taiwan,” Gynecol Oncol, Vol. 67, p.115, 1997.
86.J. H. Shepherd, “Revised FIGO Staging for Gynaecological Cancer,” Br J Obstet Gynaecol, Vol. 96, p.889, 1989.
87.J. M. Grant, “Revised FIGO Staging for Early Invasive Carcinoma of the Vulva and Cervix,” Br J Obstet Gynaecol, Vol. 21, p.103, 1996.
88.W. T. Creasman, “New Gynecologic Cancer Staging,” Obstet Gynecol, Vol. 75, p.287, 1990.
89.E. Burghardt, J. Baltzer, A. H. Tulusan and J. Haas, “Results of Surgical Treatment of 1028 Cervical Cancers Studied with Volumetry,” Cancer, Vol. 70, p.648, 1992.
90.J. M. Hawnaur, R. J. Johnson, R. D. Hunter, J. P. Jenkins and I. Isherwood, “The Value of Magnetic Resonance Imaging in Assessment of Carcinoma of the Cervix and its Response to Radiotherapy,” Clin. Oncol., Vol. 4, p.11, 1992.
91.T. Arimoto, “Significant of Computed Tomography-measured Volume in the Prognosis of Cervical Carcinoma,” Cancer, Vol. 72, p.2383, 1993.
92.M. Sasaoka, Y. Nomoto, K. Shoji, S. Kobayashi, S. Toyota and T. Nakagawa, “Radiation Therapy for Uterine Cervix Cancer: Importance of Evaluation of Pre-treatment Tumor Size with MR Imaging,” Nippon Igaku Hoshasen Gakkai Zasshi, Vol. 57, p.505, 1997.
93.R. Mamfredi, G. Maresca, D. Smaniotto, S. Greggi, D. Andrulli and C. Rabitti, “Cervical Cancer Response to Neoadjuvant Therapy : MR Imaging Assessment,” Radiology, Vol. 209, p.819, 1998.
94.C. C. Yuan, P. H. Wang, C. R. Lai, M. S. Yen, C. Y. Chen and C. M. Juang, “Prognosis-predicting System Based on Factors Related to Survival of Cervical Carcinoma,” Int. J. Gynecol Obstet, Vol. 63, p.163, 1998.
95.C. M. Juang, P. H. Wang, M. S. Yen, C. R. Lai, H. T. Ng and C. C. Yuan, “Application of Tumor Markers CEA, TPA, and SCC-Ag in Patients with Low-risk FIGO Stage IB and IIA Squamous Cell Carcinoma of the Uterine Cervix,” Gynecol Oncol., Vol. 76, p.103, 2000.
96.T. Hayashi and T. Kato, “Usefulness of Tumor Size on MR Assessing the Prognosis of Uterine Cervical Cancer Treated with Radiation,” Nippon Igaku Hoshasen Gakkai Zasshi, Vol. 59, p.250, 1999.
97.U. Schaffer, H. Hawighorst, H. Pilch, W. Weikel, I. Zuna and P. G. Knapstein, “Value of Clinically Established MRI Procedures Concerning the Pretherapeutic Cervix Cancer in Relation to Palpation Finding and Histopathologic Whole Mount Specimens,” Zentralbl Gynakol, Vol. 121, p.131, 1999.
98.Q. Y. Gong, L. T. Tan, C. S. Romaniuk, B. Jones, J. N. Brunt and N. Roberts, “Determination of Tumour Regression Rates during Radiotherapy for Cervical Carcinoma by Serial MRI : Comparison of Two Measurement Techniques and Examination of Intraobserver and Interobserver Variability,” Br. J. Radiol., Vol. 72, p.62, 1999.
99.C. Y. Chou, K. F. Hus, S. T. Wang, S. C. Huang, C. C. Tzeng and K. E. Huang, “Accuracy of Three-dimensional Ultrasonography in Volume Estimation of Cervical Carcinoma,” Gynecol Oncol., Vol. 66, p.89, 1997.
100.M. Suzuki, “Role of X-ray CT and Magnetic Resonance Imaging in the Diagnosis of Gynecological Malignant Tumor,” Nippon Sanka Fujinka Gakkai Zasshi, Vol. 41, p.942, 1989.
101.H. Hricak, “Cancer of the Uterus : the Value of MRI Pre- and Post-irradiation,” Int. J. Radiat. Oncol. Biol. Phys., Vol. 21, p.1089, 1991.
102.M. Varpula, P. Kilholma and P. Lemi, “CT and Ultra Low Field (0.02 T) MR Imaging of Uterine Cervical Carcinoma,” Acta. Radiol., Vol. 35, p.361, 1994.
103.R. Mezrich, “Radiology in Invasive Cervical Cancer,” Magn. Reson. Imaging Clin. N. Am., Vol. 2, p.211, 1994.
104.H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford and B. C. Teeter, “Two Algorithms for the Three-dimensional Reconstruction of Tomograms,” Med. Phys., Vol. 15, p.320, 1998.
105.S. G. Fischetti, F. Coppolino, G. D. Priolo, R. Chiarenza, A. Garufi and G. Privitera, “Magnetic Resonance in the Evaluation of Parametrial Involvement in Carcinoma of the Cervix Uteri,” Radiol. Med., Vol. 82, p.470, 1991.
106.T. Arimoto, J. Mizoe, T. Kamada, H. Tsujii, H. Shirato and Y. Matsuoka, “CT-aided Volumetry and Prognosis in Cervical Carcinoma,” Radiat. Med., Vol. 2, p.197, 1984.
107.T. Arimoto, “Significance of Computed Tomography-measured Volume in the Prognosis of Cervical Carcinoma,” Cancer, Vol. 72, p.2383, 1993.
108.N. A. Mayr, V. A. Magnotta, J. C. Ehrhardt, J. A. Wheeler, J. I. Sorosky and B. C. Wen, “Usefulness of Tumor Volumetry by Magnetic Resonance Imaging in Assessing Response to Radiation Therapy in Carcinoma of the Uterine Cervix,” Int. J. Radiat. Oncol. Biol. Phys., Vol. 35, p.1113, 1996.
109.Immersion Corporation, Immersion Medical - Laparoscopy, January 2003, http://www.immersion.com/products/medical/laparoscopy_hardware.shtml.
110.The VRML Consortium Incorporated, Web3D Consortium - All Aspects of 3D Technologies on the Internet, January 2003, http://www.vrml.org.
111.Computer Associates International Inc., Cosmo Software, January 2003, http://ca.com/cosmo/.
112.Discreet Corporation, Discreet Products - 3DS Max, January 2003, http://www.discreet.com/products/3dsmax/.
113.Silicon Graphics, Inc., SGI - Cosmo Software Cosmo Worlds, January 2003, http://www.sgi.com/software/cosmo/worlds.html.