跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹偉松
Wei-Sho Zhen
論文名稱: 稀薄氣體平行混合流熱傳分析
指導教授: 洪祖昌
Zuu-Chang Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 100
中文關鍵詞: 蒙地卡羅熱傳平行流稀薄氣體pdf
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以直接模擬蒙地卡羅( Direct Simulation Monte Carlo )法計算極音速稀薄氣體中平行混合流之速度、壓力、溫度、密度之流場性質,另外本文亦計算混合層中速度、溫度脈動相關函數 、 、 、聯合機率密度函數 、 以對稀薄氣體混合之內在結構、動量、熱量傳輸有所了解。本文首先觀察其流場特性以及自由流(參考表2.1)分別為不同速度比,0.2,0.4,0,0.6時自由剪力流混合結構之差異,接著以各種機率密度函數探討流場特性,最後並與連性紊流混合層之結果相較,希望藉由這些函數的解析,對稀薄流場的”紊性”有更深一層的了解。

    結果發現混合層紊性熱量的傳輸,x方向的熱量傳遞 (圖5.24)約為y方向的的熱量傳遞 (圖5.25)的二倍,且x方向的熱量傳遞趨勢和流場截面 的分佈類似,y方向的熱量傳遞( )的趨勢和能量項(圖5.17)相似,都是愈往下游愈小。

    並藉由聯合機率密函數 、 與 、 截面分佈圖比較發現聯合機率密度函數形狀與混合層內在結構、動量、熱量傳輸相關性高,當 形狀愈偏離高斯分佈,其 值愈大,當 形狀愈接近高斯分佈,其 值愈小,而 的分佈趨勢和 相同,上層區偏向於正,下層區偏向於負。


    摘要i 目錄ii 圖表目錄iv 符號說明ix 第一章緒論1 1-1簡介1 1-2稀薄氣體( dilute gas )定義3 1-3Boltzmann方程式的解法4 第二章 直接模擬蒙地卡羅法 9 2-1DSMC原理及應用 9 2-2網格設置12 2-3起始條件( Initial Condition )13 2-4邊界條件( Boundary Condition )14 2-5碰撞對( Collision Pair )的選擇16 第三章分子模型的選擇 3-1VHS分子模型18 3-2單原子分子模型19 3-3雙原子分子模型20 第四章動量脈動相關函數及機率密度函數 的求得 4-1連性流體紊流場中動量脈動相關函數23 4-2DSMC法的應用26 第五章結果與討論29 5-1 使用軟體與計算時間 30 5-2超極音速稀薄氣體自由流混合層之性質 31 5-3 超極音速稀薄氣體自由流熱量的傳輸 35 5-4 紊性熱量傳遞與分子熱量傳遞比較 35 5-5混合層各級一點脈動機率密度函數 38 5-6與連性紊流混合層的比較 45 5-7結論與建議47 參考文獻49 附表與附圖52

    1.Dimitri Paramoschou & Anatol Roshko (1988), “The Compressible Turbulent Shear Layer: An Experimental Study”, J. Fluid Mech., vol. 197, pp. 453-477

    2.J. L. Herrin & J. C. Dutton (1997), “The Turbulence Structure of a Reattaching Axisymmetric Compressible Free Shear Layer”, Phys. Fluids, vol. 9, no. 11, pp3502-3512

    3.G. A. Bird, ""Molecular Gas Dynamics"", London, Oxford Univ. Press (1976).

    4.G. A. Bird, ""Molecular Gas Dynamics and the Direct Simulation of Gas Flows"", London, Oxford Univ. Press (1994).

    5.歐陽堅, ""二維鈍體極音速流場氣體動力分析"", 國立中央大學機械研究所碩士論文 (1992).

    6.李威龍, ""鈍體極音速稀薄氣體流場分析"", 國立中央大學機械研究所碩士論文 (1994).

    7.傅維安 (1996), “稀薄氣體自由剪力層中動量相關函數之探討”, 國立中央大學機械研究所碩士論文

    8.J. D. Anderson, ""Hypersonic and High Temperature Gas Dynamics"", McGraw Hill (1989).

    9.H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).

    10.C. Y. Liu and L. Lees, ""Rarefied Gas Dynamics"", Academic Press, New York, p391 (1961).

    11. P. L. Bhatenager, E.P. Gross, & M. Krook, (1954), Phys. Rev. vol. 14, pp. 511

    12. A. B. Huang & P. F. Hwang (1973), ""Test of Statistical Models for Gases with

    and without Internal Energy States"", Phys. of Fluids, vol. 6, pp. 466

    13. C. S. Wang, ""Rayleigh''s Problem of Diatomic Gases Based on Statistical Model"",

    Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan R.O.C.

    14. B. J. Alder & T. E. Wainwright (1957), “Studies in Molecular Dynamics”, J. Chem. Phys. vol. 27, pp. 1208-1209

    15. J. K. Haviland & M. L. Lavin (1962), “Applications of the Monte Carlo Method

    to Heat Transfer in a Rarefied Gas”, Phys. of Fluids, vol. 5, pp. 1399-1405

    16. J. P. Boon (1980), “Lattice Gas Automata: A New Approach to the Simulation of Complex Flows”, Plenum Press, New York, pp. 25-45

    17. G. A. Bird (1970), “Direct Simulation and the Boltzmann Equation”, Phys. of

    Fluids, vol. 13, pp. 2676-2681

    18. B. L. Haas (1994), ""Flow Resolution and Domain Influence in Rarefied

    Hypersonic Blunt-Body Flows"", J. Thermo. & Heat Tran., vol. 8, Iss. 4, pp. 751-

    757

    19. Keith C. Kannenberg & Iain D. Boyd (1996), “Monte Carlo Computation of

    Rarefied Supersonic Flow into a Pitot Probe”, AIAA J., vol. 34, no. 1, pp. 83-88

    20. G. A. Bird (1992), “Low Density Hypersonic Flow”, NCKU tutorial paper, pp. 1-24

    21. B. W. Spencer, ""Statistical Investigation of Turbulent Velocity and Pressure Fields in a Two-Stream Mixing Layer"", Ph. D. Thesis, U. of Illinois (1970).

    22. F. H. Harlow (1973), ""Turbulence Transport Modeling"", AIAA, vol. 14, Selected Reprint Series

    23. T. S. Lundgren (1967), "" Distribution Function in the Statistical Theory of

    Turbulence"", Phys. of Fluids, vol. 10, pp. 969

    24. P. M. Chung (1970), ""Chemical Reaction in a Turbulent Flow Field with Uniform

    Velocity Gradient"", Phys. of Fluids, vol. 13, pp. 1153

    25. B. W. Spencer (1970), ""Statistical Investigation of Turbulent Velocity and

    Pressure Fields in a Two-Stream Mixing Layer"", Ph. D. Thesis, U. of Illinois

    26. 洪祖昌, 陳明華 (1995), ""Statistical Description of a Free Turbulence Shear

    Layer"", Proceedings Symposium on Transport Pheno. and App., Taipei, pp. 23-30

    27. 洪祖昌, 賴榮滄 (1983), ""自由紊流剪力層之混合分析"", Chinese J. of Mechs.,

    vol. 1, no. 1, pp. 25-33

    28. 洪祖昌, 莊書豪 (1986), ""平面紊性多噴流混合分析"", 中國機械工程學刊,

    vol. 7, no. 5, pp. 361-372

    29. W. K. Melville (1972), “The Use of the Loaded-sphere Molecular Model for

    Computer Simulation of Diatomic Gases”, J. Fluid Mech., vol. 51, part 3, pp.

    571-583

    30. F. Baras, M. Malek Mansour, A. L. Garcia, & M. Mareschal (1995), “Particle

    Simulation of Complex Flows in Dilute Systems”, Journal of Computational

    Physics, vol. 119, pp. 94-104

    31. Michael A. Gallis & John K. Harvey (1996), “Modelling of Chemical Reactions

    in Hypersonic Rarefied Flow with the Direct Simulation Monte Carlo Method”, J. Fluid Mech. , vol. 312, pp. 149-172

    32. G. A. Bird (1998), “Recent Advantages and Current Challenge for DSMC”,

    Computers Math. Applic. . vol. 35, no. 1/2, pp. 1-14

    QR CODE
    :::