| 研究生: |
潘威明 Wei-Ming Pan |
|---|---|
| 論文名稱: |
行動學習環境中實施探究式實驗活動之教學設計與活動歷程分析 Instruction Design and Activity Process Analysis for Inquiry-based Experiment in a Mobile Learning Environment |
| 指導教授: |
楊接期
Jie Chi Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 科學解釋 、探究式實驗 、探究式學習 、行動學習環境 、建構主義 |
| 外文關鍵詞: | mobile learning environment, inquiry-based experimental activity, inquiry-based learning, scientific explanation, constructivism |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探究式學習是一種從學生的經驗中產生的真實情境的問題探究。此種強調學習者自身經驗的建構,除了是科學教學的主要策略外,並且以解釋為導向的探究實驗式學習,更能突顯學習者在自我知識與經驗建構的學習活動。
本研究旨在設計一個配合以「行動輔具」與「學習系統」為基礎的「探究式實驗活動」學習活動模式融入於國小「自然與生活科技學習領域」課程後,分析學習者的學習情形及學習成效外,並就解釋導向的「探究式實驗活動」,對於學習者在行動過程中,「行動輔具」如何影響「探究式實驗活動」互動之可能性因素作探討。
研究的對象共有兩班國小六年級學生為六十八人,採單組前、後測方法設計,進行二週共六節課之「探究式實驗活動」課程單元,教學前後並對兩班學生進行「自然科學學習態度量表」及「科學解釋能力測驗」以評估這樣的教學對學生科學學習之影響。並以活動理論提供給本研究一個重要的觀點,即是透過活動理論,分析學習活動的歷程,以及其內在的因素的相互作用的過程,以了解「行動學習輔具與系統」和探究式實驗活動之相關互動。
研究的結果發現:首先,配合以行動輔具與學習系統為基礎的探究式實驗活動學習模式的進行教學設計時,重視基礎課程的階段性設計概念有助於學生在導入過程的先備知識(能力)的建立。其次,強調「解釋導向」的探究式實驗活動對科學態度與科學解釋能力均有正向之影響。然而在科學解釋能力面向上偏向於淺層直覺式的科學解釋,並且對數據與圖形之轉換能力上仍有所不足。再者,行動輔具與學習系統,透過系統設計及其他學習中介產物,可以具體化探究式實驗活動,並使學習者能更聚焦在認知建構上的學習。
最後,本研究亦根據研究結果,提出相關的建議與未來的研究方向:
第一、認知取向的建構觀點的其他學習中介物,如「問題」、「反思」及「對話」等,對科學學習的影響之持續研究。
第二、持續對「探究式實驗活動」的教學模式的相關研究,特別是彰顯學習者主動建構時之認知運作歷程方面的相關因素作持續探究。
第三、在行動學習環境下之學習輔助系統,如何以學習中介物的建構互動為主軸的學習輔助系統之繼續的研究與開發。
Inquiry-based learning is an actual situation of question inquiry through student’s experience. Besides scientific teaching of major strategy, the learning emphasizes not only learners’ self-experience of establishment but also learns explanation-driven inquiry-based learning to significantly show learners’ self-knowledge and experience establishment of learning activity.
The objective of the research is to design an appropriate base of “Mobile devices” and “Learning System” that introduce “Inquiry-based Experimental Activity” of learning mold after primary course of “Nature and Life Technology Learning Area”, to analyze learners’ learning situation and effects, to explain oriented inquiry-based experimental activity, and to discuss learners how “Mobile devices” affects possible interactive factors of “inquiry-based experimental activity” during the process of activity.
The subjects of the study had involved 68 students from two classes of six grade students that applied a single team for a prior test and after test design for six classes of “Inquiry-based Experimental Activity” course in two weeks. “Learning Attitude Toward Natural Sciences Scale” and “scientifically Explanatory” were applied for two classes of student to evaluate this method of teaching may affect students to learn scientific learning after and before teaching and to become a major viewpoint of research analysis through activity theory. Besides the process of activity theory that analyze learning activity and the interactive process of inner factors, “Mobile Learning devices and System” and inquiry-based experimental activity could be correlated each other.
After analysis and the related data, the following research result and discovery. The first all, to cooperate with mobile devices and learning system with a base of inquiry-based experimental activity learning mold that designs teaching process focuses on a stage design concept of fundamental course to help students who introduce the process of prior knowledge (capability) establishment. Secondly, the emphasis on “explanatory oriented” inquiry-based experimental activity has positive effect for scientific attitude and explanatory capacity. Nevertheless, scientifically explanatory capacity rather intends to shallow intuitive scientific explanation, but data and graph still has insufficient transformative capacity. Finally, through system design and other learning media, mobile devices and learning system can be a specific inquiry-based experimental activity so that learners can intend to focus on cognitive establishment learning more.
In addition, the research based on the research result and proposed the related suggestion and the future research aspect as the followings:
1. The other learning media of cognitive approach of establishment viewpoint such as “Problem”, “Reflection”, and “Dialog” etc. for continual research and discussion of scientific learning effect
2. To continue with the related research of “inquiry-based experimental activity” of teaching mold, especially for when learners actively establish the related factors of cognitive execution process for continual research
3. How learning aids system under mobile learning environment becomes learning media of interactive establishment as a major learning aids system for continual research and development.
中文部分
王美芬、熊召弟(1995)。自然科學教法專輯。台北。心理出版。
甘漢銧、熊召弟、鍾聖校(1996)。 小學自然科教學研究。台北市。 師大書苑。
朱則剛(2000)。教育傳播與科技。台北:師大書苑。
吳穎沺(2004)。建構主義式的科學學習活動對國小高年級學生認知結構之影響。國立交通大學教育研究所碩士論文,未出版,新竹市。
洪振芳(2003)。探究室教學的歷史回顧與創造性探究模式之初探。高學師大學報,15,641-662。
徐光台(1999)。建構主義與科學教育進步。歐美研究,29 (4),頁153-183 。
國民小學自然科課程實驗研究委員會(1994)。國民小學自然科新課程概說。
教育部(2001)。中小學資訊教育總藍圖。2005年7月20日取自http://140.111.1.192/moecc/information/itpolicy/ itprojects/itmasterplan.htm。
教育部(2003)。國民中小學九年一貫課程綱要自然與生學習領域。台北:教育部。
郭重吉、江武雄、王夕堯(1990)。從理論到實務談建構主義。2000年5月7日取自http://140.128.56.8/sci-edu/edu_3_15.htm。
陳斐卿、江火明、王宏仁、林惠倫(2001)。探究式專題學習的Z圖設計—促進驗證的鷹架模式。載於中華民國電腦學會主辦「全國計算機會議」。2001年12月20-21日,台北:中國文化大學。
陳斐卿、江火明(2004)。從參與典範看行動學習輔具在科學學習的意義。數位學習電子期刊,2。2005年7月20日取自http://www.ael.org.tw/filectrl/2-5.pdf
陳靜曄、蔣佳玲 (2005)。國小學童不同類型科學活動中學習行為之比較。載於中華民國科學教育年會論文集。2005年12月16-18日,彰化:彰化師範大學。
黃仕期、陳致宏、楊接期(2004)。應用於國小自然科實驗之行動學習環境的架構。GCCCE2004,頁739-747。
黃萬居譯(2002)。自然科學教育-- K-9 以發現為基礎的教材教法(Joseph Abruscato)(著)。台北市: 學富文化。
黃鴻博(2000)。兒童科學探究活動遭遇問題的探討。台中師院學報(14)。
楊榮祥(1988)。自然科學教學法專輯。國立台灣師範大學科學教育中心編印。
劉宏文(1996)。建構主義的認識論觀點及其在科學教育上的意義。科學教育月刊,第193期,頁8-26。
鄭麗華(2002)。以探究式實驗活動提升國二學生參與實驗活動及過程技能之行動研究。國立彰化師範大學科學教育研究所在職進修專班碩士論文,未出版。
賴錦緣、吳正己、陳勝美(2005)。運用PDA支援認知學徒教學策略。載於中華民國科學教育年會論文集。2005年12月16-18日,彰化:彰化師範大學。
謝州恩(2005)。探究情境中國小學童科學解釋能力成長之研究。國立師範大學科學教育研究所論文,未出版,台北市。
謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大學報:科學教育類,50(2),55-84。
英文部分
Ash, D, & Kluger, B. B.(2000). Indentifying Inquiry in the K-5 Classroom. In FOUNDATIONS-A monograph for professionals in science, mathematics and technology education.(Vol. 2): Inquiry --Thoughts, Views, and Strategies for the K-5 Classroom. NSF.
Barab, S. A., Barnet, M., Yamagata-lynch, L., Squire, K., & Keating, T. (2002). Using Activity Theory to Understand the Systemic Tensions Characterizing a Technology-Rich Introductory Astronomy Course. MIND, CULTURE, AND ACTIVITY, 9(2), 76-107.
Bereiter, C. (2002). Education and Mind in the Knowledge Age. Mahwah: NJ, Lawrence Erlbaum Associates.
Bowen, G. M., & Roth, W.-M. (2002). Why students may not learn to interpret scientific inscription. Research in Science Education, 32, 303-327.
Bransford, J., Brown, A., & Cocking, R. (1999). How People Learn: Brain, Mind, Experience, and School. Washington, DC: National Academy Press.
Bybee, R. W. (2004). Scientific Inquiry and Science Teaching. In L.B. Flick and N.G. Lederman(Eds.), Scientific Inquiry and Nature of Science- Implications for Teaching, Learning, and Teacher Education(pp. 1-14). Mahwah., MA: Kluwer Academic Publishers.
Chang, C. Y., Chen, Y. S., Kao, T. C., Hwang, W. Y., Chou, L. D., Chen, Y. W., Sheu, J. P., & Chan, T. W. (2005). Some Studies and Lessons Learned from Mobile Outside Classroom Learning. submitted to Computers & Education, Oct. 2005.
Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
Engström, Y. (1987). Learning by Expanding: An Activity - Theoretical Approach to Developmental Research. Helsinki: Orienta-Konsultit.
Gay, R., Rieger, R. & Bennington, T. (2002). Using mobile computing to enhance field study. In Miyake, N., Hall, R. & Koschmann, T. (Eds.), CSCL 2: Carrying Forward the Conversation Mahwah (pp. 507-528). NJ: Lawrence Erlbaum.
Hakkarainen, K. (2004). Pursuit of Explanation within A Computer-Supported Classroom. International Journal of Sceince Education, 26(8), 979-996.
Harris, P. (2001). Goin Mobile. Retrieved December 18, 2005, from the World Wide Web: http://www.learningcircuit.org/2001/jul2001/harris.html
Hinrichsen, J., Jarrett, D., & Peixotto, K. (1999). Science Inquiry for the Classroom--A Literature Review. THE Northwest Regional Educational Laboratory PROGRAM REPORT.
Jonassen, D. H.(2000). Revisiting Activity Theory as a Framework for Designing Student-Centered Learning Environments. In D. H. Jonassen & S. M. Land (Eds.), Theoretical Foundations of Learning Environments (pp.89-121). Mahwah, NJ: Lawrence Erlbaum Associates
KONG, S. C., LAM, S. Y., KWOK, L. F. (2005). A Cognitive Tool in Handheld Devices for Collaborative Learning: Comprehending Procedural Knowledge of the Addition of Common Fractions. In procedings of Computer Supported Collaborative Learning 2005: The Next 10 Years! .Taipei, Taiwan.
Krajcik, J. S. (2001). Supporting Science Learning in Context: Project-Based Learning. In R. F. Tinker, J. S. Krajcik (Eds.), Portable Technologies.
Kuhn, D., Black, J., Keselman, A. & Kaplan, D. (2000). The Development of Cognitive Skills To Support Inquiry Learning. COGNITION AND INSTRUCTION, 18(4), 495-523.
Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction research. In B. Nardi (ed.), Context and Consciousness: Activity Theory and Human Computer Interaction, Cambridge: MIT Press.
Leont''ev, A. N. (1978). Activity, Consciousness, and Personality. Englewood Cliffs, NJ, USA: Prentice-Hall
Lincoln, Y., & Guba, E. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
Liu, T.C., Wang, H.Y. , Liang, J.K. , Chan, T.W. , Ko, H.W. &Yang, J.C. (2003). Wireless and mobile technologies to enhance teaching and learning. Journal of Computer Assisted Learning, 19, 371-382.
Lucas, K., & Roth, W. -M. (1996). The nature of scientific knowledge and student learning : Two longitudinal case studies. Review in Science Education, 26(1), 103-127.
Matthew, M.(2002). Constructivism and Science Education: A Further Appraisal. Journal of Science Education and Technology, 11 (2), 121-134.
Milrad, M., Gottdenker, J., Strobel, J., Björn, M. & Kartlsson, M. (2006). Exploring Technologies and Activities to Support Authentic Scientific Inquiry Learning. Retrieved October 31, 2006, from the World Wide Web: http://spaceplanting.coe.missouri.edu/doc/docs/ICCE_scinquiry.pdf
Minstrell, J. A. (1989). Teaching science for understanding. In L. B. Resnick and L. E. Klopfer (Eds), 1989 Yearbook of Association for Supervision and Curriculum Development : Alexandria, VA.
Naismith, L., Lonsdale, P., Vavoula, G. & Sharples, M. (2005) Literature Review in Mobile Technologies and Learning. A Report for NESTA Futurelab. Available from NESTA FutureLab website.
Nardi, B. (1998). Context and Consciousness: Activity Theory and Human- -Computer Interaction. canadian journal of communication, 23(2).
National Research Council (1996). Inquiry and the National Science Education Standards. Washington, D. C.: National Academy Press.
National Research Council (1996). National science education standards. Washington, D. C.: National Academy Press.
National Research Council (2000). Inquiry and the National Science Education Standards. Washington, D. C.: National Academy Press.
Novak, A. M., and Gleason, C. I. (2001). Incorporating Portable Technology to Enhance an Inquiry, Project-Based Middle School Science Classroom. In R. F. Tinker, J. S. Krajcik (Eds.), Portable Technologies-Science Learning in Context (pp.29-62). NJ: Kluwer Academic.
Pinkwart, N., Hoppe, H.U., Milrad, M. &Perez, J. (2003). Educational scenarios for cooperative use of Personal Digital Assistants. Journal of Computer Assisted Learning, 19, 383-391.
Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, A. J. (2001). Bguile: Strategic and Conceptual Scaffolds for Scientific Inquiry in Biology Classrooms’. Cognition and instruction :Twenty-five years of progress. Mahwah, NJ: Erlbaum.
Rogers, Y., Price, S., Randell, C., Stanton-Fraser, D., Weal, M. & Fitzpatrick. G., (2005). Ubi-learning: Integrating outdoor and indoor learning experiences. Comm. of ACM, 48(1), 55-59.
Roschelle, J & Pea, R. (2002). A walk on the wild side: How wireless handhelds may change CSCL, In Proceedings of CSCL 2002, LEA, NJ , 51-60.
Roschelle, J., Penuel, W. R., Yarnall, L., Shechtman, N., & Tatarw, D. (2005). Handheld tools that ‘Informate’ assessment of student learning in Science: a requirements analysis. Journal of Computer Assisted learning . 21, 190-203.
Roth, W. M.(1994). Experimenting in a Constructivist high school Physical Laboratory. Journal of Research in Science teaching, 31(2), 197-213.
Sandoval, W. A. & Daniszewski, K. (2004). Mapping Trade-Offs in teachers’ integration of Technology-Supported inquiry in high school science classes. Journal of Science Education and Technology, 13(2), 161-178.
Sandoval W. A., Reiser B. J. (2004). Explanation-Driven Inquiry: Integrating Conceptual and Epistemic Scaffolds for Scientific Inquiry. Science Education , 88, 345-372.
Sandoval, W. A., Millwood, K. A. (2005). The Quality of Students'' Use of Evidence in Written Scientific Explanations. Cognition and Instruction. 23(1), 23-55.
Sariola, J. (2001). What Are the Limits of Academic Teaching? In Search of the Opportunities of Mobile Learning. Telelearning , Vancouver, Canada.
-Science Learning in Context(pp. 7-28). NJ: Kluwer Academic.
Sharples, M., Corlett, D. & Westmancott, O. (2002). The Design and Implementation of a Mobile Learning Environment. Personal and Ubiquitous Computing, 6, 220-234.
Sharples, M., Taylor, J. and Vavoula, G. (2005). Towards a Theory of Mobile Learning. In Proceedings of mLearn 2005 Conference. Cape Town, South Africa.
Sherman, S. J., & Sherman, R. S. (2004). Science and Science Teaching -Mmethods for Integrating Technology in Elementary and Middle Schooles (2nd Ed.). Boston, MA: Houghton Mifflin Company.
Solomon, J. (1987). Social influences on the construction of pupils’ understanding of science. Studies in Science Education, 14, 63-82.
Solomon, J.(1995). Higher level understanding of the nature of science. The Nature of Science. 76(276), 15-22.
Soloway, E, Jackson, S L, Klein, J, Quintana, C, Reed, J, Spitulnik, J, Stratford, S J, Studer, S, Jul., S, Eng, J. & Scala, N. (1996). Learning theory in practice: case studies of learner-centered design. In Proceedings of CHI, Conference on Human Factors in Computing Systems, ACM Press, 189-96.
Soloway, E., Norris, C., Blumenfeld, P., Fishman, B., Krajcik, J. & Marx, R. (2001). Log on education: Handheld devices are ready-at-hand. Comm. of the ACM, 44(6), 15-20.
Staudt, C. (2001). Curriculum Design Principles for Using Probeware in a Project-Based Learning Setting: Learning Science in Context. In R. F. Tinker, J. S. Krajcik (Eds.), Portable Technologies-Science Learning in Context(pp. 87-119). NJ: Kluwer Academic.
Suther, D., Connelly, J., Lesgold, A., Paolucci, M., Toth, E. E., Toth, J., & Weiner, A. (2001). Representational and Advisory Guidance for Students Learning Scientific Inquiry. In K. D. Forbus, P. J. Feltovich (Eds), Smart Machines in Education , (pp. 7-35). AAAI Press/The MIT Press
Tinker, R. & Vahey, P. (2002). CILT2000: Ubiquitous Computing - Spanning the Digital Divide. Journal of Science Education and Technology, 11(3).
Tobin, M. & Kumar, S. (1990). Design of experiment is the best way to optimize a process atminimal cost. In procedings of Electronic Manufacturing Technology Symposium, ''Competitive Manufacturing for the Next Decade''. Washington, DC.
Tsai, C. C. (2001). The interpretation construction design model for teaching science and its applications to Internet-based instruction in Taiwan. International Journal of Educational Development, 21, 401-415.
Varela, F., Thompson, E., & Rosch, E. (1991). Second generation immune networks. Immunology Today, 12, 159-166.
von Glasersfeld, E. (1990). An exposition of constructivism: Why some like it radical. In Davis, R. B., Maher, C. A., & Noddings, N. (eds.) Constructivist Views on the Teaching and Learning of Mathematics. NCTM.
Vygotsky, L. S. (1962). Thought and language. Cambridge, MA: MIT Press.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychology processes. Cambridge, MA: Harvard University Press.
White, B., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accisible to all students. Cognition and Instruction, 16(1), 3-118
White. B. Y., Shimoda. T. A., & Frederiksen, J. R. (2000). Facilitating students'' inquiry learning and metacognitive development through modifiable software advisers. In S. P. Lajoie (Ed), Computers as Cognitive Tools ,Volume II . Mahwah, NJ: Lawrence Erlbaum Associates.
Zacharia, Z. & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students'' conceptual understanding of physics. American Journal pf Physics, 71 (6), 618-629.
Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20(1), 99-149.
Zurita, G. & Nussbaum, M. (2004). Computer supported collaborative learning using wirelessly interconnected handheld computers. Computers & Education , 42 , 289-314.