| 研究生: |
陳諄修 Juen-shiou Chen |
|---|---|
| 論文名稱: |
在不同氣氛下Al-6Zn-XMg(X=0,2wt%)熱合氧化膜的成長機制 Thermally formed oxide films on Al-6Zn-XMg(X=0,2wt%) alloys heated in different gases |
| 指導教授: |
施登士
Teng-shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 熱合氧化膜 、γ氧化鋁 、氮化鋁 |
| 外文關鍵詞: | AlN, γ-alumina, Oxide film |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討Al-6Zn和Al-6Zn-2Mg合金試片的熱成長氧化膜分析,目的在於了解鋅對鋁合金氧化膜的影響,所以採用仿7系列鋁合金成份來研究,實驗利用乾磨的方式將試片研磨至P2000號砂紙,在空氣和氮氣氣氛下,將試片置於加熱爐內500℃持溫後觀察氧化膜的相變化。使用熱重分析儀(TGA)來量測試片氧化膜重量的改變,再用低掠角X-ray判定氧化膜可能的化合物,以及SEM、ESCA、EPMA等儀器分析。
從實驗結果得知Al-6Zn合金在空氣氣氛中的氧化膜表層以致密的γ氧化鋁為主,內層的γ氧化鋁則和鋅反應形成Zn spinel,並且有鋅顆粒散佈在氧化膜上面。Al-6Zn-2Mg合金當中鎂的氧化物自由能比鋁氧化物還低,所以表面為氧化鎂和Mg spinel組成的氧化物為主並且結構較為鬆散,而γ氧化鋁位於鎂氧化層和基材之間,以及有鋅顆粒在表面的散佈。
在氮氣氣氛當中,鋅原子不容易形成氮化鋅,所以Al-6Zn氮氣中的試片以AlN以及因表面吸附的氧與基材的鋁反應形成的γ氧化鋁為主,而Al-6Zn-2Mg氮氣中的試片表面主要為鋁和鎂的氮化物,產生的Mg3N2化合物會與基材中的鋁反應持續產生AlN造成重量的改變。
The purpose of this study is analyzing the thermal-formed oxide on aluminum alloys and effect of Zinc in the oxide film. Two materials, Al-6Zn、Al-6Zn-2Mg were used in this study. All surface of the sample were dry polished by SiC paper from P400 to P2000. The sample were set in quartz furnace then heated at 773K for different time spans in dry air and nitrogen gas. Thermo-gravimetric analysis was used to measure the weight change of oxide film. Samples were discussed according to XRD、SEM、ESCA、EPMA analysis.
Experimental result show that the oxide film of Al-6Zn alloy comprised γ-alumina in top layer and Zn spinel in inter layer. The γ-alumina reacted with Zinc transformed to Zn spinel .There are metallic Zinc on the Al-6Zn sample oxide film surface. The main consists of Al-6Zn-2Mg oxide film were magnesium oxide and Mg spinel, because of magnesium oxide Gibbs-free energy lower than the alumina. Magnesium oxide film possessed of loose structures. The alumina located at region near the interface between magnesium oxide film and substrate. This sample have metallic Zinc in oxide film too.
Because of the Zinc is difficult to form Zinc nitride in the nitrogen gas, so that Al-6Zn sample weight change is due to the formation of AlN and γ-alumina. Al-6Zn-2Mg sample surface was formed by aluminum nitride and magnesium nitride in the nitrogen gas, Mg3N2 contact with substrate Al and form AlN, and this chain reaction will cause the sample weight change.
1.R. A. Robie, B. S. Hemingway, J.R. Fisher, Thermodynamics properties of minerals and related substances at 298.15K and 1 bar (105 pascal) pressure and at higher temperature, U.S. Government Printing Office, Washington, pp. 137-248, (1978).
2.I. J. Polmear, Light Alloys: Metallurgy of the Light Metals, 3rd ed., John Wiley & Sons, New York, (1995).
3.王木琴,機械材料,台灣復文興業股份有限公司,台南,473-481頁,民國八十七年。
4.P. S. Santos, H. S. Santos, S. P. Toledo, “Standard Transition Aluminas. Electron Microscopy Studies”, Materials Research, Vol. 3, pp.104-114, (2000).
5.L. D. Hart, Esther Lense, Alumina Chemicals: Science and Technology Handbook, American Ceramic Society, Westerville, Ohio, p.32, 50, (1990).
6.William D. Callister, Jr., Materials Science and Engineering: An Introduction, 4th ed, John Wiley & Sons, New York, p.38, (1997).
7.M. R. Alexander, G. E. Thompson, G. Beamson, “Characterization of the Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron Spectroscopy: A Procedure for Curve Fitting the O 1s Core Level”, Surface and Interface Analysis, Vol. 29, pp.468-477, (2000).
8.W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed, Wiley, New York, p.64, 65, (1976).
9.I. Levin, D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences”, Journal of the American Ceramic Society, Vol. 81, pp. 1995-2012, (1998).
10.Per Kofstad, High Temperature Oxidation of Metals, John Wiley & Sons, New York, (1996).
11.L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer, “Composition and Chemical State of the Ions of Aluminium-Oxide Films Formed by Thermal Oxidation of Aluminum”, Surface Science, Vol. 506, pp. 313-332, (2002).
12.R. E. Sanders, Jr., Aluminum Alloys-physical and Mechanical Properties, pp. 1441-1484, (1986).
13.余樹禎,晶體之結構與特性,國立編譯館,民國八十五年。
14.D. W. Roy, J. L. Hastert, “Polycrystalline MgAl2O4 spinel for high temperature windows”, Ceramic Engineering and Science Proceedings, Vol. 4, p. 502, (1993).
15.V. K. Singh, R. K. Sinha, “Low temperature synthesis of spinel (MgAl2O4)”, Materials Letters, Vol. 31, pp. 281-285, (1997).
16.J. F. Al-Sharab, F. Cosandey, “TEM characterization of nanostructured MgAl2O4 synthesized by a direct conversion process from γ-Al2O3” J. Am. Ceram. Soc., Vol. 89, pp. 2779-2285, (2006).
17.V. Kevorkijan, T. Kosmac and K. Kristoffer, ”Sponaneous reactive infiltration of porous ceramic performs with Al-Mg and Mg in the presence of both magnesium and nitrogen-new experimental evidence”, Materials and Manufacturing Process, 17(3), pp.307-322, (2002).
18.W. Adamson and Alice P. Gast, “Physical chemistry of surfaces”, (1997).
19.S. Porowski, MRS Inter. J. Nitride Semi. Re. 4S1, G10.2, (1999).
20.鑄造科技,216期,民國九十六年九月。
21.鋁合金的冶金特性,鑄造月刊,139期,民國九十年四月。
22.H. G?mez , A. Maldonado , “Properties of Al-doped ZnO thin films deposited by a chemical spray process” Materials Characterization, Vol.58, pp. 708–714, (2007).
23.H.-Y. Tsai , “Characteristics of ZnO thin film deposited by ion beam sputter”,
Journal of Materials Processing Technology, Vol. 192–193, pp. 55–59, (2007).
24.G. G. Rusu, Mihaela Gˆırtan, M. Rusu , “Preparation and characterization of ZnO thin film sprepared by thermal oxidation of evaporated Zn thin films”, Materials Characterization, Vol. 58,pp. 708–714, (2007).
25.H.-C. Wang , Y.-L. Wei, Y.-W. Yang , “XAS study of Zn-doped Al2O3 after thermal treatment”, Journal of Electron Spectroscopy and Related Phenomena , pp. 817–819, (2005).
26.B. S. S. Daniet and V. S. R. Mushy, “Directed melt oxidation and nitridation of aluminium alloys: a comparison”, (1995).
27.M. Tavoosi, F. Karimzadeh, M.H. Enayati, “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters, Vol. 62, pp. 282–285, (2008).
28.Valenzuela, M. A., Bosch, P., Aguilar-rios, G., Montoya, A. and Schifter, I. J.Sol –Gel Sci.Technol., Vol. 8, p. 107, (1997).
29.W. S. Hong, L. C. De Jonghe, X. Yang, M. N J. Rahaman, Am. Ceram.Soc,
Vol. 78, p. 3217, (1995).
30.S. Menon, B. Dhabekar, E. Alagu Raja, S.P. More, T. K. Gundu Rao and R.K. Kher, “TSL, OSL and ESR studies in ZnAl2O4: Tb phosphor”, Author’s Accepted Manuscript, (2008).
31.K. T. Jacob, “Gibbs free energies of formation of ZnAl2O4 and ZnCr2O4”, Thermochimica Acta, pp. 79-87, (1976).
32.M. Hanabe, V. Jayaram and T. A. Bhaskaran, “Growth of Al2O3/Al Composites from Al-Zn Alloys”, (1994)
33.R. S. Brian, M. H. David, “Surface Spectroscopic Characterization of the Interaction between Zinc Ions and γ-Alumina”, Journal of catalysis, Vol. 86, pp. 266-279, (1984).
34.J. H. Edgar, W. J. Meng, “thermal properties and refactive index of AlN”, Chapter 1-3 Crystal structure, mechanical properties, Properties of Group Nitrides, (1993).
35.C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popsecu, “Optical, Electrical and structural properties of AlN thin film”, IEEE, pp. 193-186, (1995).
36.Q. Zheng, R. G. Reddy, “Mechanism of in situ formation of AlN in Al melt using nitrogen gas”, Journal of Materials Science, Vol. 39, pp. 141-149, (2004).
37.H. Z. Ye, X. Y. Liu, Ben Luan, “In situ synthesis of AlN in Mg-Al alloys by liquid nitridation”, Journal of Materials Processing Technology, Vol. 166, pp. 79-85, (2005).
38.W. Adamson and Alice P. Gast, “Physical chemistry of surfaces”, (1997).
39.S. Porowski, MRS Inter. J. Nitride Semi. Re. 4S1, G10.2, (1999).
40.International Center for Diffraction Data, PCPDFWIN-Powder Diffraction Film(粉末繞射光碟資料庫), (2001)
41.T. -S. Shih et al., “Thermal-formed Oxide on the Aluminum and Magnesium”, The Japan Institue of Metals, (2006).