跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃士峻
SHIH-CHUN HUANG
論文名稱: 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
Performance Measurements of A Single-Cell Stack of Planar SOFC:The Size Effect of Pin-type Flow Channels
指導教授: 施聖洋
Shenqyang Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 棋盤狀流場板平板式SOFC峰值功率密度電池性能電池堆
外文關鍵詞: Planar SOFC, single-cell stack, pin-type flow distributor
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立一套高溫固態氧化物燃料電池(solid oxide fuel cell, SOFC)性能測試平台,並針對不同棋盤狀流道設計之單電池堆,進行一系列的電流-電壓曲線量測與分析,以獲得不同流道設計對電池性能有何影響的結 果。SOFC單電池堆由一40 mm x 40 mm陽極支撐PEN (positive electrode- electrolyte-negative electrode)、加上集電層(陽極為鎳網而陰極為白金網),以及自行利用陶瓷材料加工的不同棋盤狀流道板所組構而成。所探討的流道設計參數,包括三個不同格狀突出物寬度與流道寬度總和(Wpitch = 2 mm, 4 mm, 10 mm),以及三個不同流場板中格狀突出物寬度與流道寬度之比值(f = 0.33, 0.5, 0.66)。實驗結果顯示,當f = 0.5,並將電池操作溫度控制在850 oC時,電池堆的峰值功率密度值(Peak power density, PPD)會隨Wpitch之減小而增大。PPD值在Wpitch = 2 mm比在10 mm Wpitch提昇了約7.2 %,故採用越小的Wpitch,有助於使反應氣體均勻分佈於PEN表面。此外,當Wpitch固定時,則f值越小,PEN與反應物接觸的有效面積越大,因此PPD值在f = 0.33比f = 0.66可提升約2.4 %。最後本論文也將統合分析操作條件,如反應物質量流率以及操作溫度對電池性能的影響。


    This thesis aims to establish a high-temperature solid oxide fuel cell (SOFC) performance testing platform, so that a series of current-voltage curve measurements and analysis for a single-cell stack using different designs of flow distributors can be performed. The SOFC single-cell stack consists of a 40 mm x 40 mm anode-support PEN (positive electrode-electrolyte-negative electrode), two collector layers (nickel meshes for the anode and platinum meshes for the cathode), and home-made pin-type flow distributors with various sizes. Two key geometrical parameters of the pin-type flow distributors, including three different pitch widths (Wpitch = Wpin + Wchannel = 2 mm, 4 mm, 10 mm) and three different values of the pin-width fractions (f = Wpin / Wpitch = 0.33, 0.5, 0.66), are discussed. Experimental results show that the stack performance, i.e., peak power density (PPD), increases with decreasing Wpitch when f fixed as 0.5, and the stack was operated at 850 oC. It is found that flow distribution in the flow distributors with Wpitch = 2 mm is more uniform than that of the case with Wpitch = 10 mm and thus a 7.2 % increase of the PPD can be obtained. Furthermore, the flow distributors with a smaller f can increase the contact area between the reactants and PEN so that the stack using the flow distributors with f = 0.33 can produce a PPD 2.4 % higher than that of the case with f = 0.66. Finally, the effects of the operator conditions, such as the flow rate of the reactants and the operating temperatures, on the stack performance are also discussed.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VII 第一章 前言 1 1.1 研究動機與目的 1 1.2 問題所在 2 1.3 解決方法 4 1.4 論文概要 4 第二章 文獻回顧 8 2.1 SOFC操作原理與發展 8 2.1.1 電極 8 2.1.2 電解質 9 2.1.3 密封材料 10 2.1.4 PEN種類 11 2.1.5 集電層概念運用 12 2.1.6 SOFC的發展歷程 12 2.2 燃料電池的開路電壓 13 2.3 燃料電池的極化現象 14 2.4 流道設計 16 2.5 肋條與流道尺寸的影響 17 2.6 對沖流以及棋盤狀流道的使用 19 第三章 實驗設備與量測方法 30 3.1 單電池堆性能測試平台 30 3.1.1 電化學電池 30 3.1.2 測試儀器 30 3.1.3 氣體控制系統 30 3.1.4 電池堆結構 31 3.2 實驗參數設定與實驗流程 32 3.3 不同棋盤狀流道製作及設計 33 3.3 單電池堆測試平台遭遇之問題 35 第四章 結果與討論 47 4.1 實驗參數靈敏度測試 47 4.1.1 訊號擷取率 47 4.1.2 陽極還原時間 47 4.2 棋盤狀流道參數對電池性能之影響 48 4.2.1 Wpitch效應 49 4.2.2 f值效應 49 4.3 反應物流率效應 50 4.3.1 H2流率對電池性能的影響 50 4.3.2 空氣流率對電池性能的影響 51 4.3.3 N2流率對電池性能的影響 52 4.4 溫度效應 53 4.5 由PEN分析流場分佈 54 4.6 相異接線方法比較 55 第五章 結論與未來工作 71 參考文獻 73

    [1] BP Statistical Review of World Energy 2007 ; http://www.agric.wa.gov.au/ pls/portal30/docs/FOLDER/IKMP/SUST/BIOFUEL/190707_STATSREVIEW07PERTH.PDF.
    [2] Gregor, H., Fuel cell technology hand book., CRC Press, Germany, 2003.
    [3] Huang, C. M., Shy, S. S. and Lee, C. H. “On flow uniformity in various interconnects and its influence to cell performance of planar SOFC” J. Power Sources 183, 205-213, 2008.
    [4] 顏正和「平板式固態氧化物燃料電池雙極板之流道設計與流場觀測」國立中央大學,碩士論文,民國93年。
    [5] 簡奇偉「平板式固態氧化物燃料電池氣態多孔管道之速度量測」,國立中央大學,碩士論文,民國95年。
    [6] 簡暐珉「平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析」國立中央大學,碩士論文,民國97年。
    [7] Jeon, D. H., Nam, J. H. and Kim, C. J. “Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model” J. Electrochem. Soc. 153, A406-A417,2006.
    [8] Liu, S., Song, C. and Lin, Z. “The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization” J. Power Sources 183, 214-225, 2008.
    [9] Ji, Y., Yuan, K., Chung, J. N. and Chen, Y. C. “Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells” J. Power Sources 161, 380-391, 2006.
    [10] U. S. DOE, Fuel cell hand book, 6th Eds., EG and G Technical Services Inc., West Virginia, 2002.
    [11] Vielstich, W., Lamm, A. and Gasteiger, H. A., Handbook of fuel cells : fundamentals, technology, and applications, John Wiley and Sons Ltd., West Sussex, 2003.
    [12] Stambouli, A. B. and Traversa, E. “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy” Renew. Sust. Energy Rev. 6, 433-455, 2002.
    [13] Larminie, L. and Dicks, A., Fuel cell systems explained, 2nd Eds., John Wiley and Sons Ltd., Chichester, 2000.
    [14] Singhal, S. C. and Kendall, K., High temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier Science, Kidlington, 2003.
    [15] Simner, S. P. and Stevenson, J. W. “Compressive mica seals for SOFC applications” J. Power Sources 102, 310-316, 2001.
    [16] Bram, M., Reckers, S., Drinovac, P., Mönch, J., Steinbrech, R. W., Buchkremer, H. P. and Stöver, D. “Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks” J. Power Sources 138, 111-119, 2004.
    [17] Chou, Y. S. and Stevenson, J. W. “Compressive mica seals for solid oxide fuel cells” J. Mater. Eng. Perform. 15, 414-421, 2006.
    [18] Taniguchi, S., Kadowaki, M., Yasuo, T., Akiyama, Y., Miyake, Y. and Nishio, K. “Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material” J. Power Sources 90, 163-169, 2000.
    [19] Leah, R. T., Brandon, N. P. and Aguiar, P. “Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500-600 °C” J. Power Sources 145, 336-352, 2005.
    [20] Pyke, S. H., Howard, P. J. and Leah, R. T. “Planar SOFC technology : stack design and development for lower cost and manufacturability” DTI Research Report, DTI/Pub-URN 02/1350, 2002.
    [21] European Fuel Cell Forum ; http://www.efcf.com/media/ep010813.shtml
    [22] Gaskell, D. R., Introduction to the thermodynamics of materials, Taylor and Francis, Washington, 1995.
    [23] Hamann, C. H., Hamnett, A. and Vielstich, W., Electrochemistry, Vch Verlagsgesellschaft Mbh, New York, 1998.
    [24] Virkar, A. V., Chen, J., Tanner, C. W. and Kim, J. W. “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells” Solid State Ionics 131, 189-198, 2000.
    [25] Sasaki, K., Wurth, J. P., Gschwend, R., Gödickemeier, M. and Gauckler, L. J. “Microstructure-property relations of solid oxide fuel cell cathodes and current collectors” J. Electrochem. Soc. 143, 530-543, 1996.
    [26] Singhal, S. C. “Solid oxide fuel cells for stationary, mobile, and military applications” Solid State Ionics 152-153, 405-410, 2002.
    [27] de Souza, S., Visco, S. J. and Jonghe, L. C. D. “Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte” J. Electrochem. Soc. 144, L35-L37, 1997.
    [28] Xin, X., Lü, Z., Huang, X., Sha, X., Zhang, Y. and Su, W. “Anode- supported solid oxide fuel cell based on dense electrolyte membrane fabricated by filter-coating” J. Power Sources 159, 1158-1161, 2006.
    [29] Patcharavorachot, Y., Arpornwichanop, A. and Chuachuensuk, A. “Electrochemical study of a planar solid oxide fuel cell: Role of support structures” J. Power Sources 177, 254-261, 2008.
    [30] Jianga, S. P., Love, J. G. and Apateanu, L. “Effect of contact between electrode and current collector on the performance of solid oxide fuel cells” Solid State Ionics 160, 15-26, 2003.
    [31] Lin, Z., Stevenson, J. W. and Khaleel, M. A. “The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs” J. Power Sources 117, 92-97, 2003.
    [32] Ferguson, J. R., Fiard, J. M. and Herbin, R. “Three-dimensional numerical simulation for various geometries of solid oxide fuel cells” J. Power Sources 58, 109-122, 1996.
    [33] Liu, H. C., Lee, C. H., Shiu, Y. H., Lee, R. Y. and Yan, W. M. “Performance simulation for an anode-supported SOFC using Star-CD code” J. Power Sources 167, 406-412, 2007.
    [34] Andreassi, L., Rubeo, G., Ubertini, S., Lunghi, P. and Bove, R. “Experimental and numerical analysis of a radial flow solid oxide fuel cell” Int. J. Hydrogen Energy 32, 4559-4574, 2007.
    [35] Suwanwarangkul, R., Croiset, E., Entchev, E., Charojrochkul, S., Pritzker, M. D., Fowler, M. W., Douglas, P. L., Chewathanakup, S. and Mahaudomc, H. “Experimental and modeling study of solid oxide fuel cell operating with syngas fuel” J. Power Sources 161, 308-322, 2006.
    [36] Hui, S. R., Yang, D., Wang, Z., Yick, S., Decès-Petit, C., Qu, W., Tuck A., Maric, R. and Ghosh D. “Metal-supported solid oxide fuel cell operated at 400-600 °C” J. Power Sources 167, 336-339, 2007.
    [37] Jung, H. Y., Choi, S. H., Kim, H., Son, J. W., Kim, J., Lee, H. W. and Lee, J. H. “Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm × 10 cm anode-supported cells” J. Power Sources 159, 478-483, 2006.
    [38] Jiang, S. P. “Resistance measurement in solid oxide fuel cells” J. Electrochem. Soc. 148, A887-A897, 2001.
    [39] Zhao, F. and Virkar, A.V. “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters” J. Power Sources 141, 79-95, 2005.
    [40] Yoon, K. J., Gopalan, S. and Pal, U. B. “Analysis of electrochemical performance of SOFCs using polarization modeling and impedance measurements” J. Electrochem. Soc. 156, B311-B317, 2009.
    [41] Haanappel, V. A. C. & Smith, M. J. “A review of standardising SOFC measurement and quality assurance at FZJ” J. Power Sources 171, 169-178, 2007.
    [42] Third Orbit Power Systems, Inc. ; http://www.thirdorbitpower.com/SOFC_ mech.html.
    [43] Forschungszentrum Jülich (FZJ) ; http://www.fz-juelich.de/portal.
    [44] U. S. DOE, Fuel cell hand book, 7th Ed., EG and G Technical Services Inc., West Virginia, 2004.
    [45] Minh, N. Q. and Takahashi, T., Science and technology of ceramic fuel cells, Elsevier Science, New York, 1995.
    [46] Yakabe, H., Ogiwara, T., Hishinuma, M. and Yasuda, I. “3-D model calculation for planar SOFC” J. Power Sources 102, 144-154, 2001.
    [47] de Haart, L. G. J., Vinke, I. C., Janke, A., Ringel, H., and Tietz, F. In: Yokpawa, H. and Singhal, S. C., (Eds.), Solid Oxide Fuel Cells (SOFC VII), Electrochem. Soc. Proc., The Electrochemical Society, Pennington, New Jersey, PV2001-16, 111, 2001.
    [48] Jiang, S. P. “Resistance measurement in solid oxide fuel cells” J. Electrochem. Soc. 148, A887-A897, 2001.
    [49] Huang, S. C., Huang, C. M. and Shy, S. S. “Numerical and Experimental Studies on Effects of Various Sizes of Pin-type Flow Distributors to Cell Performance of a Single Planar SOFC Stack”於7/30~8/31計算流體力學會議發表

    QR CODE
    :::