跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林瑞哲
Jui-che Lin
論文名稱: 應用球狀電極改善石英之電化學放電加工特性研究
Improving machining characteristics of quartz in electrochemical discharge machining by spherical electrode
指導教授: 黃豐元
Fuang-Yuan Huang
顏炳華
Biing-Hwa Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 石英氣膜結構放電頻率球狀電極電化學放電加工
外文關鍵詞: Gas film structure, Discharge frequency, Quartz, ECDM, Spherical electrode
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學放電加工(Electrochemical Discharge Machining , ECDM)是以高溫熔融並藉此高溫可加快蝕刻速度的加工機制,因此非常適合應用於石英材料之精微加工。而由於電化學放電加工主要是藉由電化學反應在電極表面形成之氣膜而產生放電現象之材料移除模式,所以氣膜的結構及穩定性為影響加工效率及精度之關鍵因素。因此本研究將首先探討不同氣膜結構對於加工性能之影響,而後為了提升加工石英材料之加工性能,擬以球狀之電極外形改善現有電化學放電加工在深孔加工效率不佳的問題。
    從實驗結果得知,由圓柱電極的氣膜包覆狀態中發現,由於圓柱電極的外形導致在加工初期,短暫的氣膜成形時間將降低加工效率;而氣膜的緻密性及其穩定程度也對加工性能造成顯著的影響。除此之外,由電流波形及加工後微孔之表面形貌可判斷不同氣膜結構於放電頻率及加工精度的差異;而電解液濃度也將影響氣膜的組成結構。在充份了解氣膜對於加工性能的影響後,由於圓柱電極的外形限制,不但使得加工時氣泡容易堆積於入口處,並且阻礙電解液的流動以致於對加工效率造成嚴重的影響,而在微孔之剖面及出口處也因圓柱電極外形的影響大幅降低加工後微孔之精度。而本研究採用的球狀電極,其加工性能與圓柱電極相比較,不但可大幅度的將加工時間縮短了83%、擴孔量減少65%,同時於貫穿孔加工後,出口處不會瞬間破裂而影響其微孔品質,也可得到孔壁剖面筆直度較高之微孔輪廓,以獲得高精度之石英微孔。


    Electrochemical discharge machining(ECDM)is used high-temperature melting assisted by accelerated chemical etching, hence it is well suitable for quartz material precisely machining. During ECDM, gas film will be formed on the tool electrode surface due to electrochemical reaction and then result in discharge phenomenon. Therefore both the structure and stability of gas film have significant effect factors on the efficiency and precision of machining. For this reason, first we will discuss the influence of different gas film structure on machining characteristics in this study. And then in order to improve the machining characteristics which is processed the quartz material. Try using the spherical electrode to improve present electrochemical discharge machining which has the problem about efficiency on the deep hole.
    Experimental results show the coalesce status of gas film in the cylinder electrode decreased the machining efficiency because of the short time of gas film. Compact and stability of gas film lead to influence of machining characteristics. Moreover, current waveform and appearance of micro-hole can analyze the difference of different coalesce status of gas film structure on discharge frequency and machining precision. The electrolyte concentration will also influence the gas film structure. Therefore this study is using spherical electrode to overcome such problem mention above. Compare with the cylinder electrode, the machining time is decreased 83%, the micro-hole diameter is reduced 65%. Meanwhile after passes through the perforation hole processing, the exit of micro-hole can not break to effect its quality. It can get higher straight of hole wall cross-section, and obtain the high-accuracy micro-hole in quartz.

    目 錄 摘 要 ...................................................................................................................... i Abstract ................................................................................................................. ii 誌 謝 .................................................................................................................... iii 目 錄 .................................................................................................................... iv 圖目錄 ................................................................................................................. vii 表目錄 .................................................................................................................. ix 第一章 緒論 ....................................................................................................... 1 1-1 研究動機 ................................................................................................. 1 1-2 文獻回顧 ................................................................................................. 3 1-2-1 電化學放電加工機制文獻 .......................................................... 3 1-2-2 電化學放電加工製程特性文獻 .................................................. 4 1-3 研究目的 ................................................................................................. 6 第二章 實驗原理 ............................................................................................... 7 2-1 電化學放電加工原理 ............................................................................. 7 2-2 ECDM的電化學反應[5] ....................................................................... 9 2-3 ECDM的放電火花產生過程[6] ......................................................... 10 2-4 ECDM的材料移除機制 ...................................................................... 12 2-5 放電加工原理 ....................................................................................... 15 2-5-1 放電加工去除機制 .................................................................... 17 2-5-2 放電加工的優缺點 .................................................................... 20 2-5-3 放電加工參數與影響 ................................................................ 21 2-6 線放電研削加工原理[20] .................................................................... 24 2-7 表面張力原理 ....................................................................................... 26 第三章 實驗設備、材料與方法 ..................................................................... 27 3-1 實驗設備 ............................................................................................... 27 3-1-1 放電加工機 ................................................................................ 28 3-1-2 線放電研削(WEDG)機構 .................................................... 30 3-1-3 電化學放電加工機構 ................................................................ 31 3-1-4 X-Y Table電極旋轉夾持機構 ................................................... 32 3-1-5 CCD(Charge Coupled Device)顯微量測系統 ...................... 33 3-1-6 示波器 ........................................................................................ 33 3-1-7 電源供應器 ................................................................................ 34 3-1-8 真空濺鍍機 ................................................................................ 34 3-1-9 低真空掃瞄式電子顯微鏡 ........................................................ 35 3-1-10 精密電子天平 .......................................................................... 35 3-1-11 電磁加熱攪拌器 ....................................................................... 35 3-1-12 去離子純水系統 ...................................................................... 36 3-1-13 超音波洗淨機 .......................................................................... 36 3-2 實驗材料 ............................................................................................... 37 3-2-1 電解液 ........................................................................................ 37 3-2-2 刀具電極 .................................................................................... 38 3-2-3 石墨輔助電極 ............................................................................ 39 3-2-4 工件材料 .................................................................................... 40 3-2-5 線電極材料 ................................................................................ 40 3-3 實驗流程圖 ........................................................................................... 41 3-4 實驗步驟 ............................................................................................... 42 第四章 結果與討論 ......................................................................................... 46 4-1 氣膜結構的加工性能探討 ................................................................... 46 4-1-1 不同電壓之氣膜結構對於初始加工狀態的影響 .................... 46 4-1-2 不同電壓之氣膜結構對於加工性能的影響 ............................ 50 4-1-3 不同電壓之氣膜結構對於放電頻率的影響 ............................ 53 4-1-4 不同電解液濃度對於氣膜結構的影響 .................................... 56 4-2 圓柱電極穿孔加工之特性探討 .......................................................... 58 4-3 球狀電極穿孔加工之特性 ................................................................... 64 4-3-1 球狀電極初始狀態的探討 ........................................................ 64 4-3-2 球狀電極對穿孔加工之探討 .................................................... 66 第五章 結論 ..................................................................................................... 70 參考文獻 ............................................................................................................. 72 個人簡歷 ............................................................................................................. 75 圖目錄 圖1-1 不同電極形狀對材料移除現象[5] .......................................................... 4 圖2-1 電化學放電加工基本配置圖 .................................................................. 8 圖2-2 ECDM之I-V特性曲線圖[6] ................................................................ 11 圖2-3 EDM加工機制示意圖 ........................................................................... 16 圖2-4 放電加工材料去除機制示意圖 ............................................................ 19 圖2-5 放電加工波形示意圖 ............................................................................ 23 圖2-6 WEDG加工示意圖 ............................................................................... 24 圖2-7 柱狀電極放電加工示意圖 .................................................................... 25 圖2-8 WEDM加工示意圖 ............................................................................... 25 圖2-9 三相間之表面張力示意圖 .................................................................... 26 圖3-1 實驗設備示意圖..................................................................................... 27 圖3-2 放電加工機 ............................................................................................. 28 圖3-3 線放電研削機構示意圖 ........................................................................ 30 圖3-4 電化學放電加工機構示意圖 ................................................................ 31 圖3-5 電極夾持旋轉機構示意圖 .................................................................... 32 圖3-6 CCD顯微量測系統 ............................................................................... 33 圖3-7 示波器 ..................................................................................................... 33 圖3-8 可程式直流電源供應器 ........................................................................ 34 圖3-9 真空濺鍍機 ............................................................................................. 34 圖3-10 低真空掃描式電子顯微鏡 .................................................................. 35 圖3-11 實驗流程圖 ........................................................................................... 41 圖3-12 階級電極修整示意圖 .......................................................................... 42 圖3-13 球狀電極成形示意圖 .......................................................................... 43 圖3-14 圓柱電極與球狀電極之幾何外形與實際SEM圖 ............................ 43 圖4-1 圓柱電極加工機制示意圖 .................................................................... 48 圖4-2 不同電壓的加工時間與加工深度之比較 ............................................ 48 圖4-3 不同電壓與加工時間之微孔表面形貌 ................................................ 49 圖4-4 固定時間下,不同電壓對入口孔徑與加工深度的影響 .................... 51 圖4-5 不同電壓之微孔孔徑與剖面形貌 ........................................................ 52 圖4-6 不同電壓加工之電流波形 .................................................................... 54 圖4-7 不同電壓加工之放電頻率 .................................................................... 55 圖4-8 不同電壓加工後之微孔蝕刻形貌 ........................................................ 55 圖4-9 不同電解液濃度下的入口孔徑與加工時間之比較 ............................ 57 圖4-10 不同電解液濃度下之微孔尺寸差異 .................................................. 57 圖4-11 圓柱電極深孔加工之示意圖............................................................... 58 圖4-12 圓柱電極於不同深度下之入口孔徑與加工時間 .............................. 59 圖4-13 圓柱電極於不同深度的微孔形貌 ...................................................... 60 圖4-14 圓柱電極貫穿孔加工之剖面形貌 ...................................................... 61 圖4-15 孔壁缺陷的四種不同模式[21] ............................................................ 62 圖4-16 圓柱電極氣泡形成機制 ...................................................................... 63 圖4-17 球狀電極氣泡形成機制 ...................................................................... 63 圖4-18 初始加工之加工時間與加工深度的趨勢 .......................................... 64 圖4-19 球狀電極於不同時間之初始加工示意圖與微孔形貌 ...................... 65 圖4-20 球狀電極不同深度下之入口孔徑與加工時間 .................................. 66 圖4-21 球狀電極貫穿孔加工示意圖 .............................................................. 67 圖4-22 球狀電極於不同深度的微孔形貌與尺寸 .......................................... 68 圖4-23 球狀電極貫穿孔加工之剖面形貌 ...................................................... 69 表目錄 表2-1 二氧化矽在25°C不同的pH值下的溶解度 ....................................... 14 表2-2 二氧化矽在不同溫度的溶液(pH6~8)下之溶解度 .............................. 14 表3-1 放電加工機參數規格表 ........................................................................ 29 表3-2 離子遷移率與導電率 ............................................................................ 37 表3-3 碳化鎢的成分與機械物理性質 ............................................................ 38 表3-4 石墨的物理特性..................................................................................... 39 表3-5 石英的機械性質..................................................................................... 40 表3-6 線電極機械性質..................................................................................... 40 表3-7 電極修整參數......................................................................................... 44 表3-8 放電成球參數......................................................................................... 44

    參考文獻
    1. C. K. Yang, J. C. Hung, C. P. Cheng, W. T. Lin and B. H. Yan, “Electrophoretic deposition characteristics of an electrical discharge machined micro-tool for micro-hole polishing in quartz ”, Journal of Micromechanics and Microengineering, Vol. 20, 055031, 2010.
    2. H. Kurafuji and K. Suda, “Electrical discharge drilling of glass ”, Annals of the CIRP, Vol. 16, pp. 415-419, 1968.
    3. I. Basak and A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining : a theoretical model and experimental verification ”, Journal of Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
    4. C. T. Yang, S. S. Ho and B. H. Yan and F. Y. Huang, “Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM) ”, Key Engineering Materials, Vol. 196, pp. 149-166, 2001.
    5. B. Bhattacharyya, B. N. Doloi, S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials ”, Journal of Materials Processing Technology, Vol. 95, pp. 145-154, 1999.
    6. V. Fascio, R. Wüthrich, H. Bleuler, “Spark assisted chemical engraving in the light of electrochemistry ”, Electrochimica Acta, Vol. 49, pp. 3997-4003, 2004.
    7. R. Wüthrich, H. Bleuler, “A model for electrode effects using percolation theory ”, Electrochimica Acta, Vol. 49, pp. 1547-1554, 2004.
    8. H. Langen, R. Wüthrich, V. Fascio and D. Viquerat, “Study of spark assisted chemical engraving-process technology date ”, International Conference of the European Society for Precision Engineering and Nanotechnology (EUSPEN) 1 Einhoven, 265, 2002.
    9. R. Wüthrich, U. Spaelter, Y. Wu and H. Bleuler, “A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving(SACE) ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 1891-1896, 2006.
    10. R. Wüthrich, B. Despont, P. Maillard and H. Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration ”, Journal of Micromechanics and Microengineering, Vol. 16, N 28- N31, 2006.
    11. Z. P. Zheng, W.H. Chwng, F. Y. Huang, and B. H. Yan, “3D microstructuring of Pyrex glass using the electrochemical discharge machining process ”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 960-966, 2007.
    12. Z. P. Zheng, H. C. Su, F. Y. Huang and B. H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process ”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 265-272, 2007.
    13. B. H. Yan, C. T. Yang, F. Y. Huang and Z. H. Lu, “Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM ”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 376-383, 2007.
    14. P. Maillard, B. Despont, H. Bleuler and R. Wüthrich, “Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE) ”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 1343-1349, 2007.
    15. M. S. Han, B. K. Min and S. J. Lee, “Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode ”, Journal of Micromechanics and Microengineering, Vol. 18, 045019, 2008.
    16. K. Furutani and H. Maeda, “Machining a glass rod with a lathe-type electro-chemical discharge machine ”, Journal of Micromechanics and Microengineering, Vol. 18, 065006, 2008.
    17. M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte ”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
    18. R. Wüthrich, and L. A. Hof, “The gas film in spark assisted chemical engraving (SACE) - A key element for micro-machining applications”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 828-835, 2006.
    19. M. Jalali, P. Maillard, and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2009.
    20. T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, “Wire Electro-Discharge Grinding for Micro-Machining ”, Annals of the CIRP, Vol. 34, pp. 431-434, 1985.
    21. S. Ali, S. Hinduja, J. Atkinson, M. Pandya, “Shaped tube electrochemical drilling of good quality holes ”, CIRP Annals - Manufacturing Technology, Vol. 58, pp. 185-188, 2009.
    22. 連紹鈞,「結合放電與複合電鍍法製作微球狀研磨工具之研究」,國立中央大學,碩士論文,民國96年。
    23. 許玉山,「硼矽玻璃的磁場輔助電化學放電加工技術研究」,國立中央大學,碩士論文,民國97年。
    24. 林萬迪,「超音波振動輔助電泳沉積於石英微孔加工特性研究」,國立中央大學,碩士論文,民國98年。
    25. 吳倫靜,「電化學放電鑽孔加工品質提升之研究」,國立臺灣大學,碩士論文,民國94年。

    QR CODE
    :::