| 研究生: |
孫瑜旋 Yu-syuan Sun |
|---|---|
| 論文名稱: |
全偏極干涉最佳化技術於樹高反演的理論分析 Theoretical Analysis of Retrieval of Forest Height Based on Coherence Optimization in Pol-InSAR |
| 指導教授: |
陳錕山
Kun-Shan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 全偏極干涉雷達 、樹高反演 |
| 外文關鍵詞: | Pol-InSAR, Estimation of tree height |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
極化合成孔徑雷達利用發射與接收不同偏極的機制,獲得目標物的散射矩陣,此散射矩陣可充分的描述電磁波與目標物的交互作用情形,而干涉合成孔徑雷達則是於兩次拍攝中,利用接收天線與目標物的幾何關係獲得相位資訊,進而轉換為地表高度。
全偏極干涉雷達技術即結合了極化合成孔徑雷達技術與干涉合成孔徑雷達技術,包含兩者的優點。特別是於植被區域觀測時,傳統干涉合成孔徑雷達技術對於植被體的散射中心無法有效分辨,但在結合全偏極雷達系統後,可利用不同偏極的干涉資訊進行植被區域的參數反演。
本研究主要分為三個部分,複相關係數的最佳化、隨機植被體疊加地表模型的建立及植被參數的反演。首先利用極化複相關係數的最佳化於資料前處理,將不同散射機制的相位中心有效區分。在隨機植被體疊加地表模型的條件下,說明植被參數反演的基本原理並分析三階段反演方法。
然而,因模型建立時包含許多假設,於真實情形有所差異,利用德國國家太空中心L波段機載的觀測資料進行驗證,討論分析其估算結果。並利用衛載資料進一步說明此方法的適用性與未來改善空間。
Fully polarimetric synthetic aperture radar(SAR) makes use of the polarimetric response of each pixel within the imaged area. The polarimetric response is highly sensitive to the scattering mechanism of a pixel. In Interferometric SAR, the surface height is derived from phase information induced by the geometry between SAR antennas and targets. Pol-InSAR technique combines the interferometric information and the polarimetric parameters of the target, especially in the vegetation area, where the scattering centers is difficult to be distinguished by single-polarized interferometric SAR. As such, Pol-InSAR has been widely studied in vegetation parameters inversion.
This study consists of three parts: coherence optimization, development of a Random Volume over Ground model(RVoG) and vegetation parameters inversion. We attack these from theoretical analysis point of view. First, coherence optimization method is used to preprocess the data so that the phase center of scatterers under different scattering mechanisms can be distinguished effectively. Based on the RVoG model, vegetation parameters inversion is exploited, in particular the three-stage inversion method is analyzed.
Validation is made using DLR L-band E-SAR data and satellite C-band Radarsat-2 SAR imagery. Results reveal that there remains drawbacks of the inversion method, largely due to oversimplified RVoG model used in the inversion. The assumptions on which RVoG model based may violate physical conditions and should be modified before the inversion of physical parameters by means of Pol-InSAR can be better applied.
1.Cloude, S. R., & Papathanassiou, K. P. (1998). Polarimetric SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 36(5), 1551-1565.
2.Papathanassiou, K., Cloude, S., & Reigber, A. (2000). Vegetation and Ground Parameter Estimation Using Polarimetric Interferometry Part I: The Role of Polarisation. Paper presented at the SAR workshop: CEOS Committee on Earth Observation Satellites.
3.Treuhaft, R. N., Madsen, S. N., Moghaddam, M., & Zyl, J. J. (1996). Vegetation characteristics and underlying topography from interferometric radar. Radio Science, 31(6), 1449-1485.
4.Treuhaft, R. N., & Cloude, S. R. (1999). The structure of oriented vegetation from polarimetric interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 37(5), 2620-2624.
5.Treuhaft, R. N., & Siqueira, P. R. (2000). Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Science, 35(1), 141-177.
6.Papathanassiou, K. P., & Cloude, S. R. (2001). Single-baseline polarimetric SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 39(11), 2352-2363.
7.Isola, M., & Cloude, S. R. (2001). Forest height mapping using space-borne polarimetric SAR interferometry. Paper presented at the Geoscience and Remote Sensing Symposium, 2001. IGARSS'01. IEEE 2001 International.
8.Cloude, S. R., & Papathanassiou, K. P. (2003). Three-stage inversion process for polarimetric SAR interferometry. Radar, Sonar and Navigation, IEE Proceedings -, 150(3), 125-134.
9.Ulaby, F. T., & Elachi, C. (1990). Radar polarimetry for geoscience applications. Norwood, MA, Artech House, Inc.,
10.Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382.
11.Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. Geoscience and Remote Sensing, IEEE Transactions on, 30(5), 950-959.
12.Krieger, G., Papathanassiou, K. P., & Cloude, S. R. (2005). Spaceborne polarimetric SAR interferometry: Performance analysis and mission concepts. Eurasip Journal on Applied Signal Processing, 2005, 3272-3292.
13.Treuhaft, R. N., & Siqueira, P. R. (2000). Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Science, 35(1), 141-177.
14.Keydel, W. DLR’s SAR Activities Objectives and Results.
15.Jong-Sen, L., Cloude, S. R., Papathanassiou, K. P., Grunes, M. R., & Woodhouse, I. H. (2003). Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications. Geoscience and Remote Sensing, IEEE Transactions on, 41(10), 2254-2263.
16.Cloude, S. (2010). Polarisation: applications in remote sensing: Oxford University Press.
17.Lee, J.-S., & Pottier, E. (2009). Polarimetric radar imaging: from basics to applications: CRC press.