跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁穎志
YING-ZHI WENG
論文名稱: 公路交通運輸對於山谷地形郊區空氣品質之影響
Influence of road traffic with air quality in the suburban valley topography
指導教授: 蕭大智
Ta-Chih Hsiao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所在職專班
Executive Master of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 空氣品質交通污染坪林山谷地形
外文關鍵詞: Air Quality, Traffic Pollution, Pinglin, Valley Topography
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究將探討公路交通運輸之廢氣污染對於郊區山谷地形空氣品質之關聯性,研究目的包括瞭解近年來後坪林地區空氣品質變化、分別分析平假日空氣污染物濃度、探討坪林地區空氣品質受鄰近區域影響之情形,最後再以分級光化強度探討二次氣膠污染貢獻及特徵。
      由研究結果顯示,2013年至2017年坪林空氣品質站監測結果,氣狀污染物NOx、SO2、CO皆遠低於空氣品質標準,而粒狀污染物TSP、PM10、PM2.5則亦多符合標準,顯示本區空氣品質現況佳。進一步比較NOx及CO濃度,當每日交通量(以下坪林行控中心專用道外車數作為交通量評估指標)為總筆數之前75%時所對應的平均濃度比每日交通量為總筆數之後25%時所對應的平均濃度分別高出約20.0%及4.5%。而由NOx及CO之相關性比較,當相對濕度小於70%時,NOx與CO濃度相關係數r為0.61(R2=0.369)並呈中度相關,然而隨著環境濕度上升,NOx與CO濃度相關係數r隨之降低,推測原因可能為當環境中濕度越高時,NOx中之NO2較CO易溶於水並形成硝酸及亞硝酸,故當相對濕度越低時,NOx與CO二者濃度間之相關性較高。
      在可能受鄰近區域空氣品質影響之評估,比較坪林北側的環保署基隆測站在不同風速下,各項污染物與本測站相關性比較顯示,當基隆測站日平均風速增加時,基隆及坪林兩測站PM10濃度彼此間相關性越高,故推測坪林地區PM10濃度增加除本地交通污染排放導致外,當鄰近區域風速較高時,亦可能帶入位於上風處之污染物進入坪林。
      另外由分級光化強度探討二次氣膠評估結果顯示當6至8月間O3平均濃度(以環保署基隆、汐止、宜蘭測站O3平均為背景)小於40 ppb時,坪林測站所測得之PM10及CO相關性較佳(r=0.64,R2=0.416),故推測光化學反應所生成之二次氣膠可能亦會增加坪林地區懸浮微粒濃度(PM10、PM2.5),又以夏季陽光照度高、臭氧濃度高時影響較大。


      In this study, data collected from Pinglin air quality station are using to investigate the correlation of air pollution from road transport with suburban valley topographic air quality. The research aims include understanding the Pinglin area air quality changes in recent years, analyzing air quality in weekdays and holidays, investigate the air pollution that may influence from neighboring regions and explore on the contribution and characteristics of secondary aerosol pollution by fractional actinic intensity.
      According to the results from the monitoring of Pinglin air quality station from 2013 to 2017, the gaseous pollutants NOx, SO2, and CO were all far below the air quality standards, while the particulate pollutants TSP, PM10, and PM2.5 were also usually been lower than the standards either, shows that the air quality in the area is in good condition. To further compare NOx and CO concentrations, when the daily traffic volume (using Pinglin interchange car numbers as the traffic assessment indicator ) is in the fourth quartile of all traffic volume, the corresponding average concentration is greater than the daily traffic volume in the first quartile about 20.0% and 4.5% higher. Also, compared with the correlation of NOx and CO, when the relative humidity is less than 70%, the correlation coefficient r of NOx and CO concentration is 0.61 (R2=0.369) and it is moderately correlated. However, as the ambient humidity increases, the correlation coefficient between NOx and CO are getting lower. The decrease in r may be due to the fact that when the humidity in the environment is higher, NO2 in NOx is more soluble in water than CO and forms nitric acid and nitrous acid. Therefore, when the relative humidity is lower, the correlation between the NOx and CO concentrations is higher.
      Based on the assessment of the air quality that may be affected by the neighboring regions, comparing the EPA's Keelung air quality station on the north side of Pinglin with different wind speeds, the result shows that when the average daily wind speed at the Keelung station increases, the PM10 concentrations at the two stations in Keelung and Pinglin are more correlated with each other. Therefore, in addition to local traffic pollution emissions, when the wind speed in neighboring areas is high, it may also bring pollutants located in the upwind area into Pinglin.
      In addition, the secondary aerosol evaluation results from the graded actinic intensity shows that when the average O3 concentration (based on the O3 average of the EPA Keelung, Xizhi, and Yilan stations) is less than 40 ppb from June to August, the correlation between PM10 and CO in Pinglin station is better (r=0.64, R2=0.416), so it is inferred that the secondary aerosol generated by the photochemical reaction may also increase the suspended particulate concentration (PM10, PM2.5) in the Pinglin region. In summer, high sunlight intensity and high ozone concentration may have a greater influence.

    目 錄 摘 要 I ABSTRACT II 誌 謝 IV 目 錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 1.1 研究緣起 1 1.2 研究限制 3 1.3 研究目的 3 第二章 文獻回顧 5 2.1 臺灣近年北部空氣品質現況 5 2.2 污染物受交通量改變之影響 5 2.2.1 交通污染物種類 5 2.2.2 污染物受交通影響逐時變化 6 2.2.3 污染物間相關性比較 6 2.3 氣象條件及鄰近區域空污對空氣品質之影響 7 2.4 光化強度對於二次氣膠生成之可能影響 7 第三章 研究方法 9 3.1 研究架構與流程 9 3.2 研究區域與數據來源 11 3.3 監測儀器原理 13 3.4 數據處理及分析方法 17 3.4.1 數據處理 17 3.4.2 分析方法 17 第四章 結果與討論 19 4.1 基本資料彙整 19 4.1.1 交通量 19 4.1.2 氣象 24 4.1.3 污染物年平均趨勢變化 26 4.1.4 污染物月份分佈 31 4.1.5 污染物逐時濃度日夜變化 35 4.2 交通量改變對空氣污染物濃度之影響 38 4.2.1 不同交通量下各項空氣污染物濃度變化 38 4.2.2 平假日空氣污染物逐時濃度變化 41 4.3 坪林空氣品質受氣象條件及鄰近區域影響 43 4.3.1 不同濕度下NOx與CO之相關性比較 43 4.3.2 臺灣北部空品區監測值現況 46 4.3.3 鄰近環保署空氣品質監測站測值 46 4.3.4 坪林地區空氣品質不良事件日與鄰近區域比較 48 4.3.5 不同風速下測站空氣污染物濃度相關性比較 48 4.4 光化強度對於二次氣膠生成之影響 50 第五章 結論與建議 53 5.1 結論 53 5.2 建議 55 參考文獻 56

    1. Rogak, S.N., Green, S.I., Pott, U., 1998. Use of tracer gas for direct calibration of emission- factor measurements in a traffic tunnel. Air & Waste Mange. Assoc., 48, 545-552.
    2. Wild, R., Dubé, W., Aikin, K., Eilerman, S., Neuman, J., Peischl, J., Ryerson, T. and Brown, S. (2018). On-road measurements of vehicle NO2 /NOx emission ratios in Denver, Colorado, USA.
    3. Fang G C, Chang C N, Wang N P, Wu Y S, Wang V, Fu P P C, Cheng C D, Chen S C and Lin D Y. The study of TSP, PM2.5-10 and PM2.5 during Taiwan Chi-Chi Earthquake in the traffic site of central Taiwan, Taichung. Chemosphere, 2000,41(11): 1727-1731.
    4. Horng C L, Cheng M T. Distribution of PM2.5, acidic and basic gases near highway in central Taiwan. Atmospheric Research, 2008, 88(1): 1-12.
    5. Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y. and Zhao, D. (2018).Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China.
    6. Chang, K.H., Jeng, F.T., Tsai, Y.L., Lin, P.L., 2000. Modeling of long-range transport on Taiwan's acid deposition under different weather conditions. Atmospheric Environment 34, 3281-3295.
    7. Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmospheric Environment 33, 2771-2781.
    8. Na, K., Sawant, A.A., Song, C., Cocker III, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California Atmospheric Environment 38, 1345-1355.
    9. 北宜高速公路坪林行控中心專用道開放供外來旅客(每日最多四千車次)水源區保護共同管理協調會報,http://twmo.wratb.gov.tw/
    10. 行政院環保署空氣品質監測網,https://taqm.epa.gov.tw/taqm/tw/default.aspx
    11. 行政院環保署環境檢驗所,https://www.niea.gov.tw/
    12. 北宜高速公路坪林行控中心專用道開放供外來旅客(每日最多4,000車次)環境影響差異分析報告(定稿本),交通部臺灣區國道新建工程局,2006年。
    13. 國道3號(汐止至南港路段)四處交流道運轉功能整合改善工程可行性研究,交通部臺灣區國道高速公路局,2009年。
    14. 林佳瑩 (2017),台灣中部山區局環流 結構特性與其對空氣汙染物傳送 過程的影響,國立中央大學大氣科學學系碩士論文。
    15. 張順欽,台北市空氣品質近十年來變動型態及其顯現的意義,中央大學環境工程研究所博士論文,2006年1月。
    16. 林致平(2008),宜蘭空氣品質區懸浮微粒與臭氧變化相關性分析。蘭陽學報,第7期,第23-31頁。
    17. 許鼎居、葉麗芬、林智雄、張建民(2013),臺灣北部地區硫氧化物與其他空氣污染物之相關性研究。萬能學報,第35 期,第279-285頁。
    18. 林昭遠,交通及工業區空氣品質監測站PM10濃度影響因素之研究,國立中興大學水土保持學系碩士論文,2014年7月。
    19. 程萬里、鄭曼婷、白玨玲、林煜棋、林宗賢(2001),臺中盆地氣象環境對懸浮微粒濃度分佈之影響--案例分析。第七屆海峽兩岸環境保護學術研討會。
    20. 蔡春進、繆敦耀、邱信夫、林采吟、鍾俊彬、黃政雄、王斯厚(1998),本土化溢散性粉塵控制技術調查研究,第十五屆空氣污染控制技術研討會。
    21. 郭石柱 (2009),揚塵懸浮微粒(PM10)與氣象因子相關性分析-以台東縣關山鎮空氣品質監測站為例-,國立中興大學水土保持學系碩士論文。
    22. 張致瑋、謝雲生(2013),南高雄懸浮微粒粒徑分布特性分析,鑛冶:中國鑛冶工程學會會刊,第224期,頁20-26。
    23. 陳鴻烈、羅惠芬(2009),空氣污染物及其光化反應生成臭氧濃度之日變化分析,水土保持學報 41(1):1-16。

    QR CODE
    :::