跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高甘
Gagan Mandal
論文名稱: 最後一次冰消期的南大洋動力學和上升流 :模擬研究
Southern Ocean Dynamics and Upwelling During the Last Deglaciation: A Modeling Study
指導教授: 李時雨
Lee, Shih-Yu
余嘉裕
Yu, Jia-Yuh
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 國際研究生博士學位學程
Taiwan international graduate program - Earth system science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 204
中文關鍵詞: 南部海洋氣候建模上升流風應力西風海冰最後一次冰消期南極洲
外文關鍵詞: Southern Ocean, Climate Modeling, Upwelling, wind stress, westerly wind, sea ice, last deglaciation, Antarctica
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 末次冰消期之(距今 (BP) 之前的 9 至 21000 年 (kyr))氣候演變是了解氣候驅動力與反饋作用如何影響地球氣候的最佳時間。 南大洋通過湧升流與海洋表層水交換養分和富含碳的深海海水,並將表層海水的有機碳與無機碳帶入深水循環,上述過程在冰期氣候系統中發揮著重要作用. 然而,對推動南大洋湧升流的物理機制的理解仍在發展中. 本論文采用海氣耦合地球系統氣候模式, 在海盆尺度上研究了南大洋末次冰消期海洋-大氣-海冰-陸地表面的氣候演化時間序列. 此外, 本研究的重點是通過一系列的單一強迫力敏感實驗了解冰川變化在軌道日照、溫室氣體、大陸冰蓋和海洋淡水注入強迫力中對經向翻轉環流和南大洋洋流動力學的作用.

    這項研究表明, 從南半球近地表西風帶、風切和南極海冰覆蓋範圍看來,從末次冰盛期 (19 至 20 kyr BP) 到海因里希事件 1(Heinrich I 14.7 至17.6 kyr BP)至 Younger Dryas(11.5 至 12.5 kyr BP事件,南大洋上升流主要是由風應力驅動的。然而, 在全新世開始期間(9 到 10 kyr BP), 結果顯示南大洋上升流增加而風切卻下降, 這表明尚有其它替代機制調節南大洋之湧升流強度。

    本研究的特別之處在於強調南極海冰融化和海水鹽度分層反饋的變化調節了區域海水密度並對南大洋的密度和浮力通量做出了改變, 並影響了南大洋的洋流動力.這項研究表明:解釋全新世開始期間湧生流強度的增加.

    單一強迫力敏感性實驗顯示, 軌道日照的變化對南大洋末次冰消期間的湧升流強度為主控因素。北半球融冰造成的淡水注入通量在經向翻轉環流變化的上下分支中起主導作用.

    本論文的主旨在於了解南半球西風帶、海洋和南極海冰在南大洋緯度的動態聯繫,並指出最後一次冰消期間南大洋湧生流的變化是共同受控於風切應力與海水浮力通量的變化.


    The last deglacial (9 to 21 thousand years (kyr) Before Present (BP)) climate evolution represents the vital role of feedbacks in the Earth's climate system. The Southern Ocean plays a fundamental role in the deglacial climate system by exchanging nutrients and carbon-rich deep ocean water with the surface. However, understanding the physical mechanisms that drive the Southern Ocean upwelling dynamics is still developing. This thesis investigates the last deglacial ocean-atmosphere-sea ice-land surface transient evolution in the Southern Ocean on a basin-scale employing a fully coupled Earth system model. Additionally, this study focuses on understanding the roles of the deglacial changes in orbital insolation, greenhouse gasses, continental ice sheet, and meltwater forcing to the Meridional Overturning Circulation and the Southern Ocean dynamics using single-forcing sensitivity experiments.

    This study shows the deglacial decrease in Southern Ocean upwelling following the weakening of the Southern Hemisphere near-surface westerlies, wind stress, and Antarctic sea ice coverage from the Last Glacial Maximum (19 to 20 kyr BP) to the Heinrich Stadial 1 (14.7 to 17.6 kyr BP) and the Younger Dryas (11.5 to 12.5 kyr BP). The results support that the Southern Ocean upwelling is primarily driven by wind stress. However, during the onset of the Holocene (9 to 10 kyr BP), results indicate increased Southern Ocean upwelling while wind stress decreased, suggestive of alternative mechanisms regulating the Southern Ocean upwelling.

    This study highlights that the changes in Antarctic sea ice melting and formation feedback regulate the salt and freshwater discharge. As a result, it contributed to the Southern Ocean density and buoyancy flux and influenced the Southern Ocean dynamics. Finally, this study indicates increased surface freshwater discharge and meridional density gradient from Antarctic sea ice melting and formation support the increase in Southern Ocean upwelling. Thus, the Antarctic sea ice melt-induced freshwater discharge feedback at the Antarctic sea ice-ocean boundary explains the increased upwelling during the onset of the Holocene.

    The single-forcing sensitivity experiments suggest changes in orbital insolation influenced the last deglacial Southern Ocean upwelling. The results also indicate a dominant role of Northern Hemisphere meltwater flux in the upper and lower branch of the Meridional Overturning Circulation changes. Moreover, this study shows an orbital control on the Antarctic sea ice extent (weaker sea ice retreat) and Northern Hemisphere meltwater flux control on Antarctic sea ice retreat (stronger sea ice retreat) during the Heinrich 1 and the Younger Dryas events following the bipolar seesaw.

    This thesis highlights the dynamic linkage of the Southern Hemisphere westerlies, ocean, and Antarctic sea ice in the latitudes of the Southern Ocean. Furthermore, it emphasizes that zonal wind stress and buoyancy forcing regulated by Antarctic sea ice explain the change in the Southern Ocean upwelling during the last deglaciation.

    List of Contents Page Number Abstract xiii Acknowledgments xvii List of Contents xix List of Tables xxiii List of Figures xxv List of Abbreviations and Symbols xxxv Chapter I Introduction to the Last Deglacial Southern Ocean Climate 1 1.1 Introduction 1 1.2 Southern Ocean Circulation 6 1.3 Southern Hemisphere Westerlies and Eddy fluxes 11 1.4 Southern Hemisphere Sea ice 14 1.5 Objectives 17 1.6 Overview 21 Chapter II TraCE-21ka Model Description and Evaluation 23 2.1 Model Description 23 2.2 Model Performance 27 2.3 Model Evaluation 28 2.4 Model Limitations 33 Chapter III Data and Methodology 35 3.1 Data 35 3.2 Methodology 39 Chapter IV Results: TraCE-21ka Model Simulations 43 4.1 Southern Hemisphere Westerlies 43 4.2 Southern Ocean Zonal Wind Stress 47 4.3 Southern Ocean Upwelling 52 4.4 Antarctic Sea ice Distribution 56 Chapter V Discussion: Southern Hemisphere Westerlies 61 5.1 Role of Southern Hemisphere Westerlies 61 5.2 Southern Hemisphere "Westerlies Shift" Hypothesis 62 5.3 Southern Hemisphere "Westerlies Shift": Terrestrial Records 65 5.4 Southern Hemisphere "Westerlies Shift": Oceanic Records 66 5.5 Limitations of Previous Modeling Studies 66 5.6 Discussion 68 Chapter VI Discussion: Antarctic Sea ice 75 6.1 Antarctic Sea ice 75 6.2 Buoyancy Flux 76 6.3 Antarctic Sea ice and Meridional Overturning Circulation 77 6.4 Antarctic Sea ice and Buoyancy Flux 77 6.5 Antarctic Sea ice and Salt Flux 80 6.6 Antarctic Sea ice and Freshwater Flux 81 6.7 Antarctic Sea ice and Atmosphere 83 Chapter VII Discussion: Last Deglacial Southern Ocean Upwelling 85 7.1 During the Last Glacial Maximum 85 7.2 During the Heinrich 1 and Younger Dryas 93 7.3 During the onset of the Holocene 96 Chapter VIII Last Deglacial Climate: Single-forcing Experiments 99 8.1 Introduction 99 8.2 Motivation 100 8.3 Methodology 101 8.4 Southern Ocean Dynamics in Single-forcing Experiments 102 8.5 Antarctic Sea ice Dynamics in Single-forcing Experiments 113 8.6 Discussion 115 Chapter IX Summary 123 Chapter X Conclusions 125 Chapter XI Ongoing Study 129 11.1 Introduction 129 11.2 Southern Ocean Biogeochemistry 131 11.3 Literature Survey on Southern Ocean Dynamics 133 11.4 Data and Methodology 135 11.5 Results 136 Chapter XII Academic Production 141 12.1 Original Articles 141 12.2 Conference Papers 143 Chapter XIII Bibliography 145

    Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., & Blatter, H. (2013, Aug 8). Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature, 500(7461), 190-193. https://doi.org/10.1038/nature12374

    Abernathey, R., Marshall, J., & Ferreira, D. (2011). The Dependence of Southern Ocean Meridional Overturning on Wind Stress. Journal of Physical Oceanography, 41(12), 2261-2278. https://doi.org/10.1175/jpo-d-11-023.1

    Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., & Talley, L. D. (2016). Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geoscience, 9(8), 596-601. https://doi.org/10.1038/ngeo2749

    Adkins, J. F. (2013). The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28(3), 539-561. https://doi.org/10.1002/palo.20046

    Adkins, J. F., McIntyre, K., & Schrag, D. P. (2002, Nov 29). The salinity, temperature, and delta18O of the glacial deep ocean. Science, 298(5599), 1769-1773. https://doi.org/10.1126/science.1076252

    Ahn, J., & Brook, E. J. (2008, Oct 3). Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science, 322(5898), 83-85. https://doi.org/10.1126/science.1160832

    Allison, L. C., Johnson, H. L., Marshall, D. P., & Munday, D. R. (2010). Where do winds drive the Antarctic Circumpolar Current? Geophysical Research Letters, 37(12), L12605. https://doi.org/10.1029/2010gl043355

    Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., & Burckle, L. H. (2009, Mar 13). Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2. Science, 323(5920), 1443-1448. https://doi.org/10.1126/science.1167441

    Augustin, L., Barbante, C., Barnes, P. R., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Fluckiger, J., Hansson, M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tabacco, I. E., Udisti, R., Van De Wal, R. S., Van Den Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., Zucchelli, M., & members, E. c. (2004, Jun 10). Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623-628. https://doi.org/10.1038/nature02599

    Bard, E., & Rickaby, R. E. (2009, Jul 16). Migration of the subtropical front as a modulator of glacial climate. Nature, 460(7253), 380-383. https://doi.org/10.1038/nature08189

    Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., & Broecker, W. S. (2009, Feb 26). Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457(7233), 1097-1102. https://doi.org/10.1038/nature07770

    Barrows, T. T., Stone, J. O., Fifield, L. K., & Cresswell, R. G. (2001). Late Pleistocene Glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Research, 55(02), 179-189. https://doi.org/10.1006/qres.2001.2216

    Barrows, T. T., Stone, J. O., Fifield, L. K., & Cresswell, R. G. (2002). The timing of the Last Glacial Maximum in Australia. Quaternary Science Reviews, 21(1-3), 159-173. https://doi.org/10.1016/s0277-3791(01)00109-3

    Bassett, S. E., Milne, G. A., Mitrovica, J. X., & Clark, P. U. (2005, Aug 5). Ice sheet and solid Earth influences on far-field sea-level histories. Science, 309(5736), 925-928. https://doi.org/10.1126/science.1111575

    Bauska, T. K., Baggenstos, D., Brook, E. J., Mix, A. C., Marcott, S. A., Petrenko, V. V., Schaefer, H., Severinghaus, J. P., & Lee, J. E. (2016, Mar 29). Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc Natl Acad Sci U S A, 113(13), 3465-3470. https://doi.org/10.1073/pnas.1513868113

    Berger, A. (1978). Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. Journal of the Atmospheric Sciences, 35(12), 2362-2367. https://doi.org/10.1175/1520-0469(1978)035<2362:Ltvodi>2.0.Co;2

    Berglund, S., Döös, K., Campino, A. A., & Nycander, J. (2021). The Water Mass Transformation in the Upper Limb of the Overturning Circulation in the Southern Hemisphere. Journal of Geophysical Research: Oceans, 126(8). https://doi.org/10.1029/2021jc017330

    Bourassa, M. A., Gille, S. T., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C. A., Cronin, M. F., Drennan, W. M., Fairall, C. W., Hoffman, R. N., Magnusdottir, G., Pinker, R. T., Renfrew, I. A., Serreze, M., Speer, K., Talley, L. D., & Wick, G. A. (2013). High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research. Bulletin of the American Meteorological Society, 94(3), 403-423. https://doi.org/10.1175/bams-d-11-00244.1

    Bouttes, N., Paillard, D., & Roche, D. M. (2010). Impact of brine-induced stratification on the glacial carbon cycle. Climate of the Past, 6(5), 575-589. https://doi.org/10.5194/cp-6-575-2010

    Brady, E. C., Kay, J. E., Otto-Bliesner, B. L., & Rosenbloom, N. (2013). Sensitivity to Glacial Forcing in the CCSM4. Journal of Climate, 26(6), 1901-1925. https://doi.org/10.1175/jcli-d-11-00416.1

    Broecker, W. S. (1982). Glacial to interglacial changes in ocean chemistry. Progress in Oceanography, 11(2), 151-197. https://doi.org/10.1016/0079-6611(82)90007-6

    Bronselaer, B., Winton, M., Griffies, S. M., Hurlin, W. J., Rodgers, K. B., Sergienko, O. V., Stouffer, R. J., & Russell, J. L. (2018, Dec). Change in future climate due to Antarctic meltwater. Nature, 564(7734), 53-58. https://doi.org/10.1038/s41586-018-0712-z

    Brzezinski, M. A. (1985). The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology, 21(3), 347-357. https://doi.org/10.1111/j.0022-3646.1985.00347.x

    Brzezinski, M. A., Carol, P. J., Valerie, F. M., Sigman, D. M., Sarmiento, J. L., Matsumoto, K., Gruber, N., Rau, G. H., & Coale, K. H. (2002). A switch from Si(OH)4to NO3−depletion in the glacial Southern Ocean. Geophysical Research Letters, 29(12). https://doi.org/10.1029/2001gl014349

    Buizert, C., Keisling, B. A., Box, J. E., He, F., Carlson, A. E., Sinclair, G., & DeConto, R. M. (2018). Greenland-Wide Seasonal Temperatures During the Last Deglaciation. Geophysical Research Letters, 45(4), 1905-1914. https://doi.org/10.1002/2017gl075601

    Calvo, E., Pelejero, C., Pena, L. D., Cacho, I., & Logan, G. A. (2011, Apr 5). Eastern equatorial pacific productivity and related-CO2 changes since the last glacial period. Proc Natl Acad Sci U S A, 108(14), 5537-5541. https://doi.org/10.1073/pnas.1009761108

    Carter, L., Neil, H. L., & McCave, I. N. (2000). Glacial to interglacial changes in non-carbonate and carbonate accumulation in the SW Pacific Ocean, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4), 333-356. https://doi.org/10.1016/s0031-0182(00)00137-1

    Carton, J. A., Chepurin, G. A., & Chen, L. (2018). SODA3: A New Ocean Climate Reanalysis. Journal of Climate, 31(17), 6967-6983. https://doi.org/10.1175/jcli-d-18-0149.1

    Cerovečki, I., Talley, L. D., & Mazloff, M. R. (2011). A Comparison of Southern Ocean Air–Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products. Journal of Climate, 24(24), 6283-6306. https://doi.org/10.1175/2011jcli3858.1

    Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A., & Morley, J. J. (1991). Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation. Paleoceanography, 6(6), 697-728. https://doi.org/10.1029/91pa02477

    Chase, Z., Anderson, R. F., Fleisher, M. Q., & Kubik, P. W. (2003). Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep Sea Research Part II: Topical Studies in Oceanography, 50(3-4), 799-832. https://doi.org/10.1016/s0967-0645(02)00595-7

    Chavaillaz, Y., Codron, F., & Kageyama, M. (2013). Southern westerlies in LGM and future (RCP4.5) climates. Climate of the Past, 9(2), 517-524. https://doi.org/10.5194/cp-9-517-2013

    Chen, C., & Wang, G. (2021). Simulated Southern Ocean Upwelling at the Last Glacial Maximum and Early Deglaciation: The Role of Eddy‐Induced Overturning Circulation. Geophysical Research Letters, 48(9). https://doi.org/10.1029/2021gl092880

    Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., & McCabe, A. M. (2009, Aug 7). The Last Glacial Maximum. Science, 325(5941), 710-714. https://doi.org/10.1126/science.1172873

    Clark, P. U., McCabe, A. M., Mix, A. C., & Weaver, A. J. (2004, May 21). Rapid rise of sea level 19,000 years ago and its global implications. Science, 304(5674), 1141-1144. https://doi.org/10.1126/science.1094449

    Clark, P. U., Mitrovica, J. X., Milne, G. A., & Tamisiea, M. E. (2002, Mar 29). Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science, 295(5564), 2438-2441. https://doi.org/10.1126/science.1068797

    Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., & Williams, J. W. (2012, May 8). Global climate evolution during the last deglaciation. Proc Natl Acad Sci U S A, 109(19), E1134-1142. https://doi.org/10.1073/pnas.1116619109

    Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., & Smith, R. D. (2006). The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 19(11), 2122–2143. https://doi.org/10.1175/JCLI3761.1

    Costa, K. M., Jacobel, A. W., McManus, J. F., Anderson, R. F., Winckler, G., & Thiagarajan, N. (2017). Productivity patterns in the equatorial Pacific over the last 30,000 years. Global Biogeochemical Cycles, 31(5), 850-865. https://doi.org/10.1002/2016gb005579

    Cronin, M. F., & Sprintall, J. (2001). Upper ocean structure: Wind and buoyancy‐forced upper ocean. Encyclopedia of ocean sciences, 3219 - 3227. https://doi.org/10.1006/rwos.2001.0157

    Crowley, T. J. (1992). North Atlantic Deep Water cools the southern hemisphere. Paleoceanography, 7(4), 489-497. https://doi.org/10.1029/92pa01058

    Curry, W. B., & Oppo, D. W. (2005). Glacial water mass geometry and the distribution of δ13C of ΣCO2in the western Atlantic Ocean. Paleoceanography, 20(1), PA1017. https://doi.org/10.1029/2004pa001021

    d'Orgeville, M., Sijp, W. P., England, M. H., & Meissner, K. J. (2010). On the control of glacial-interglacial atmospheric CO2 variations by the Southern Hemisphere westerlies. Geophysical Research Letters, 37(21), L21703. https://doi.org/10.1029/2010gl045261

    Dai, Y., Yu, J., & Rafter, P. A. (2021). Deglacial ventilation changes in the deep Southwest Pacific. Paleoceanography and Paleoclimatology. https://doi.org/10.1029/2020pa004172

    Delmonte, B., Petit, J. R., & Maggi, V. (2002). Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics, 18(8), 647-660. https://doi.org/10.1007/s00382-001-0193-9

    Dezileau, L., Bareille, G., & Reyss, J. L. (2003). The 231Pa/230Th ratio as a proxy for past changes in opal fluxes in the Indian sector of the Southern Ocean. Marine Chemistry, 81(3-4), 105-117. https://doi.org/10.1016/s0304-4203(02)00070-1

    Fairbanks, R. G. (1989). A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250), 637-642. https://doi.org/10.1038/342637a0

    Fenner, J., Carter, L., & Stewart, R. (1992, Nov). Late Quaternary Paleoclimatic and Paleoceanographic Change over Northern Chatham Rise, New-Zealand. Marine Geology, 108(3-4), 383-404. https://doi.org/Doi 10.1016/0025-3227(92)90206-W

    Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., & Thompson, A. F. (2014, Jun 17). Antarctic sea ice control on ocean circulation in present and glacial climates. Proc Natl Acad Sci U S A, 111(24), 8753-8758. https://doi.org/10.1073/pnas.1323922111

    Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Wegner, A., Udisti, R., Becagli, S., Castellano, E., Morganti, A., Severi, M., Wolff, E., Littot, G., Röthlisberger, R., Mulvaney, R., Hutterli, M. A., Kaufmann, P., Federer, U., Lambert, F., Bigler, M., Hansson, M., Jonsell, U., de Angelis, M., Boutron, C., Siggaard-Andersen, M.-L., Steffensen, J. P., Barbante, C., Gaspari, V., Gabrielli, P., & Wagenbach, D. (2007). Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth and Planetary Science Letters, 260(1-2), 340-354. https://doi.org/10.1016/j.epsl.2007.06.014

    Fischer, H., Schmitt, J., Lüthi, D., Stocker, T. F., Tschumi, T., Parekh, P., Joos, F., Köhler, P., Völker, C., Gersonde, R., Barbante, C., Le Floch, M., Raynaud, D., & Wolff, E. (2010). The role of Southern Ocean processes in orbital and millennial CO2 variations – A synthesis. Quaternary Science Reviews, 29(1-2), 193-205. https://doi.org/10.1016/j.quascirev.2009.06.007

    Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., & Winton, M. (2015). Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. Journal of Climate, 28(2), 862-886. https://doi.org/10.1175/jcli-d-14-00117.1

    Ganopolski, A., & Calov, R. (2011). The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Climate of the Past, 7(4), 1415-1425. https://doi.org/10.5194/cp-7-1415-2011

    Gent, P. R., & McWilliams, J. C. (1990). Isopycnal Mixing in Ocean Circulation Models. Journal of Physical Oceanography, 20(1), 150-155. https://doi.org/10.1175/1520-0485(1990)020<0150:Imiocm>2.0.Co;2

    Gersonde, R., Abelmann, A., Brathauer, U., Becquey, S., Bianchi, C., Cortese, G., Grobe, H., Kuhn, G., Niebler, H. S., Segl, M., Sieger, R., Zielinski, U., & Fütterer, D. K. (2003). Last glacial sea surface temperatures and sea-ice extent in the Southern Ocean (Atlantic-Indian sector): A multiproxy approach. Paleoceanography, 18(3), 1061. https://doi.org/10.1029/2002pa000809

    Gersonde, R., Crosta, X., Abelmann, A., & Armand, L. (2005). Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum a circum-Antarctic view based on siliceous microfossil records. Quaternary Science Reviews, 24(7-9), 869-896. https://doi.org/10.1016/j.quascirev.2004.07.015

    Gregoire, L. J., Valdes, P. J., & Payne, A. J. (2015). The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. Geophysical Research Letters, 42(22), 9970-9979. https://doi.org/10.1002/2015gl066005

    Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Müller, S. A., Sarmiento, J. L., & Takahashi, T. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles, 23(1), GB1005. https://doi.org/10.1029/2008gb003349

    Hallberg, R., & Gnanadesikan, A. (2001). An Exploration of the Role of Transient Eddies in Determining the Transport of a Zonally Reentrant Current. Journal of Physical Oceanography, 31(11), 3312-3330. https://doi.org/10.1175/1520-0485(2001)031<3312:Aeotro>2.0.Co;2

    Hallberg, R., & Gnanadesikan, A. (2006). The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project. Journal of Physical Oceanography, 36(12), 2232-2252. https://doi.org/10.1175/jpo2980.1

    Hartin, C. A., Fine, R. A., Sloyan, B. M., Talley, L. D., Chereskin, T. K., & Happell, J. (2011). Formation rates of Subantarctic mode water and Antarctic intermediate water within the South Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 58(5), 524-534. https://doi.org/10.1016/j.dsr.2011.02.010

    Haumann, F. A., Gruber, N., Munnich, M., Frenger, I., & Kern, S. (2016, Sep 1). Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537(7618), 89-92. https://doi.org/10.1038/nature19101

    Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976, Dec 10). Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194(4270), 1121-1132. https://doi.org/10.1126/science.194.4270.1121

    He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z. Y., Otto-Bliesner, B. L., & Kutzbach, J. E. (2013, Feb 7). Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494(7435), 81-85. https://doi.org/10.1038/nature11822

    Heusser, C. J. (1989). Southern Westerlies during the Last Glacial Maximum. Quaternary Research, 31(3), 423-425. https://doi.org/10.1016/0033-5894(89)90049-5

    Heusser, L., Heusser, C., Mix, A., & McManus, J. (2006). Chilean and Southeast Pacific paleoclimate variations during the last glacial cycle: directly correlated pollen and δ18O records from ODP Site 1234. Quaternary Science Reviews, 25(23-24), 3404-3415. https://doi.org/10.1016/j.quascirev.2006.03.011

    Heusser, L., Heusser, C., & Pisias, N. (2006). Vegetation and climate dynamics of southern Chile during the past 50,000 years: results of ODP Site 1233 pollen analysis. Quaternary Science Reviews, 25(5-6), 474-485. https://doi.org/10.1016/j.quascirev.2005.04.009

    Hodell, D. A., Venz, K. A., Charles, C. D., & Ninnemann, U. S. (2003). Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochemistry, Geophysics, Geosystems, 4(1), 1-19. https://doi.org/10.1029/2002gc000367

    Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., & Zhang, H.-M. (2015). Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons. Journal of Climate, 28(3), 911-930. https://doi.org/10.1175/jcli-d-14-00006.1

    Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., & Toggweiler, J. R. (1992). On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing. Paleoceanography, 7(6), 701-738. https://doi.org/10.1029/92pa02253

    Iudicone, D., Madec, G., Blanke, B., & Speich, S. (2008). The Role of Southern Ocean Surface Forcings and Mixing in the Global Conveyor. Journal of Physical Oceanography, 38(7), 1377-1400. https://doi.org/10.1175/2008jpo3519.1

    Ivanovic, R. F., Gregoire, L. J., Burke, A., Wickert, A. D., Valdes, P. J., Ng, H. C., Robinson, L. F., McManus, J. F., Mitrovica, J. X., Lee, L., & Dentith, J. E. (2018). Acceleration of Northern Ice Sheet Melt Induces AMOC Slowdown and Northern Cooling in Simulations of the Early Last Deglaciation. Paleoceanography and Paleoclimatology, 33(7), 807-824. https://doi.org/10.1029/2017pa003308

    Jacobs, S. S. (2004). Bottom water production and its links with the thermohaline circulation. Antarctic Science, 16(4), 427-437. https://doi.org/10.1017/s095410200400224x

    Jansen, M. F. (2017, Jan 3). Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc Natl Acad Sci U S A, 114(1), 45-50. https://doi.org/10.1073/pnas.1610438113

    Jansen, M. F., & Nadeau, L.-P. (2016). The Effect of Southern Ocean Surface Buoyancy Loss on the Deep-Ocean Circulation and Stratification. Journal of Physical Oceanography, 46(11), 3455-3470. https://doi.org/10.1175/jpo-d-16-0084.1

    Jiang, N., & Yan, Q. (2020). Evolution of the meridional shift of the subtropical and subpolar westerly jet over the Southern Hemisphere during the past 21,000 years. Quaternary Science Reviews, 246, 106544. https://doi.org/10.1016/j.quascirev.2020.106544

    Joos, F., & Spahni, R. (2008, Feb 5). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci U S A, 105(5), 1425-1430. https://doi.org/10.1073/pnas.0707386105

    Kaiser, E. A., Billups, K., & Bradtmiller, L. (2021). A one million year record of biogenic silica in the Indian Ocean Sector of the Southern Ocean: Regional versus global forcing of primary productivity. Paleoceanography and Paleoclimatology. https://doi.org/10.1029/2020pa004033

    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2

    Karl, T. R., & Trenberth, K. E. (2003, Dec 5). Modern global climate change. Science, 302(5651), 1719-1723. https://doi.org/10.1126/science.1090228

    Karstensen, J., & Lorbacher, K. (2011). A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its application to the NCEP reanalysis data. Tellus A: Dynamic Meteorology and Oceanography, 63(2), 338-347. https://doi.org/10.1111/j.1600-0870.2011.00510.x

    Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., & Watanabe, O. (2007, Aug 23). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448(7156), 912-916. https://doi.org/10.1038/nature06015

    Keeling, R. F., & Stephens, B. B. (2001). Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography, 16(1), 112-131. https://doi.org/10.1029/2000pa000529

    Kim, S. J., Flato, G., & Boer, G. (2003). A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium. Climate Dynamics, 20(6), 635-661. https://doi.org/10.1007/s00382-002-0292-2

    Kitoh, A., Murakami, S., & Koide, H. (2001). A simulation of the Last Glacial Maximum with a coupled atmosphere-ocean GCM. Geophysical Research Letters, 28(11), 2221-2224. https://doi.org/10.1029/2000gl012271

    Klockmann, M., Mikolajewicz, U., & Marotzke, J. (2016). The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model. Climate of the Past, 12(9), 1829-1846. https://doi.org/10.5194/cp-12-1829-2016

    Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le Quéré, C., & Bopp, L. (2013). Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quaternary Science Reviews, 68, 76-95. https://doi.org/10.1016/j.quascirev.2013.01.017

    Kohfeld, K. E., & Harrison, S. P. (2001). DIRTMAP: the geological record of dust. Earth-Science Reviews, 54(1-3), 81-114. https://doi.org/10.1016/s0012-8252(01)00042-3

    Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., & Rahmstorf, S. (2007). On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics, 45(2), RG2001. https://doi.org/10.1029/2004rg000166

    Lamy, F., Hebbeln, D., & Wefer, G. (1999). High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters. Quaternary Research, 51(1), 83-93. https://doi.org/10.1006/qres.1998.2010

    Lamy, F., Kaiser, J., Arz, H. W., Hebbeln, D., Ninnemann, U., Timm, O., Timmermann, A., & Toggweiler, J. R. (2007). Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1. Earth and Planetary Science Letters, 259(3-4), 400-413. https://doi.org/10.1016/j.epsl.2007.04.040

    Lauderdale, J. M., Garabato, A. C. N., Oliver, K. I. C., Follows, M. J., & Williams, R. G. (2013). Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO2. Climate Dynamics, 41(7-8), 2145-2164. https://doi.org/10.1007/s00382-012-1650-3

    Lauderdale, J. M., Williams, R. G., Munday, D. R., & Marshall, D. P. (2017). The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales. Climate Dynamics, 48(5-6), 1611-1631. https://doi.org/10.1007/s00382-016-3163-y

    Lea, D. W., Pak, D. K., Peterson, L. C., & Hughen, K. A. (2003, Sep 5). Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science, 301(5638), 1361-1364. https://doi.org/10.1126/science.1088470

    Lee, S.-Y., Chiang, J. C. H., Matsumoto, K., & Tokos, K. S. (2011). Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications. Paleoceanography, 26(1), PA1214. https://doi.org/10.1029/2010pa002004

    Li, L., Liu, Z., Zhu, C., He, C., & Otto‐Bliesner, B. (2021). Shallowing Glacial Antarctic Intermediate Water by Changes in Sea Ice and Hydrological Cycle. Geophysical Research Letters. https://doi.org/10.1029/2021gl094317

    Liu, W., Liu, Z., & Li, S. (2021). The Driving Mechanisms on Southern Ocean Upwelling Change during the Last Deglaciation. Geosciences, 11(7). https://doi.org/10.3390/geosciences11070266

    Liu, W., Lu, J., Leung, L. R., Xie, S.-P., Liu, Z., & Zhu, J. (2015). The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum. Climate Dynamics, 45(11-12), 3157-3168. https://doi.org/10.1007/s00382-015-2530-4

    Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., & Cheng, J. (2009, Jul 17). Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science, 325(5938), 310-314. https://doi.org/10.1126/science.1171041

    Liu, Z., Shin, S., Webb, R. S., Lewis, W., & Otto‐Bliesner, B. L. (2005). Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophysical Research Letters, 32(2), L02706. https://doi.org/10.1029/2004gl021929

    Liu, Z. Y., Lu, Z. Y., Wen, X. Y., Otto-Bliesner, B. L., Timmermann, A., & Cobb, K. M. (2014, Nov 27). Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature, 515(7528), 550-553. https://doi.org/10.1038/nature13963

    Lourantou, A., Chappellaz, J., Barnola, J. M., Masson-Delmotte, V., & Raynaud, D. (2010). Changes in atmospheric CO2 and its carbon isotopic ratio during the penultimate deglaciation. Quaternary Science Reviews, 29(17-18), 1983-1992. https://doi.org/10.1016/j.quascirev.2010.05.002

    Lowry, D. P., Golledge, N. R., Menviel, L., & Bertler, N. A. N. (2019). Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations. Climate of the Past, 15(1), 189-215. https://doi.org/10.5194/cp-15-189-2019

    Lumpkin, R., & Speer, K. (2007). Global Ocean Meridional Overturning. Journal of Physical Oceanography, 37(10), 2550-2562. https://doi.org/10.1175/jpo3130.1

    Lund, D. C., Chase, Z., Kohfeld, K. E., & Wilson, E. A. (2021). Tracking Southern Ocean Sea Ice Extent With Winter Water: A New Method Based on the Oxygen Isotopic Signature of Foraminifera. Paleoceanography and Paleoclimatology, 36(6). https://doi.org/10.1029/2020pa004095

    M. Franck, V., Brzezinski, M. A., Coale, K. H., & Nelson, D. M. (2000). Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 47(15-16), 3315-3338. https://doi.org/10.1016/s0967-0645(00)00070-9

    Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender, C. S., & Luo, C. (2006). Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research: Atmospheres, 111(D10), n/a-n/a. https://doi.org/10.1029/2005jd006653

    Makou, M. C., Oppo, D. W., & Curry, W. B. (2010). South Atlantic intermediate water mass geometry for the last glacial maximum from foraminiferal Cd/Ca. Paleoceanography, 25(4), PA4101. https://doi.org/10.1029/2010pa001962

    Maksym, T. (2016, Sep 1). Climate science: Southern Ocean freshened by sea ice. Nature, 537(7618), 40-41. https://doi.org/10.1038/537040a

    Mandal, G., Lee, S.-Y., & Yu, J.-Y. (2021). The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study. Sustainability, 13(1). https://doi.org/10.3390/su13010353

    Marchitto, T. M., Lehman, S. J., Ortiz, J. D., Fluckiger, J., & van Geen, A. (2007, Jun 8). Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science, 316(5830), 1456-1459. https://doi.org/10.1126/science.1138679

    Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W., & Brook, E. J. (2014, Oct 30). Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 514(7524), 616-619. https://doi.org/10.1038/nature13799

    Markgraf, V. (1983). Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate, and arid environments in Argentina. Palynology, 7(1), 43-70. https://doi.org/10.1080/01916122.1983.9989252

    Markgraf, V. (1989). Palaeoclimates in central and south America since 18,000 BP based on pollen and lake-level records. Quaternary Science Reviews, 8(1), 1-24. https://doi.org/10.1016/0277-3791(89)90018-8

    Markgraf, V., Bradbury, J. P., & Busby, J. R. (1986). Paleoclimates in Southwestern Tasmania during the Last 13,000 Years. Palaios, 1(4). https://doi.org/10.2307/3514474

    Marshall, J., & Radko, T. (2003). Residual-Mean Solutions for the Antarctic Circumpolar Current and Its Associated Overturning Circulation. Journal of Physical Oceanography, 33(11), 2341-2354. https://doi.org/10.1175/1520-0485(2003)033<2341:Rsftac>2.0.Co;2

    Marshall, J., & Speer, K. (2012). Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3), 171-180. https://doi.org/10.1038/ngeo1391

    Marson, J. M. (2015). Meltwater impacts on the ocean circulation since the Last Glacial Maximum Universidade de São Paulo]. São Paulo.

    Martínez Fontaine, C., De Pol‐Holz, R., Michel, E., Siani, G., Reyes‐Macaya, D., Martínez‐Méndez, G., DeVries, T., Stott, L., Southon, J., Mohtadi, M., & Hebbeln, D. (2019). Ventilation of the Deep Ocean Carbon Reservoir During the Last Deglaciation: Results From the Southeast Pacific. Paleoceanography and Paleoclimatology, 34(12), 2080-2097. https://doi.org/10.1029/2019pa003613

    Marzocchi, A., & Jansen, M. F. (2019). Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice. Nature Geoscience, 12(12), 1001-1005. https://doi.org/10.1038/s41561-019-0466-8

    McGee, D., Broecker, W. S., & Winckler, G. (2010). Gustiness: The driver of glacial dustiness? Quaternary Science Reviews, 29(17-18), 2340-2350. https://doi.org/10.1016/j.quascirev.2010.06.009

    McGlone, M. S. (2001, Mar). A late Quaternary pollen record from marine core P69, southeastern North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 44(1), 69-77. <Go to ISI>://WOS:000168523700008

    McGlone, M. S., Turney, C. S. M., Wilmshurst, J. M., Renwick, J., & Pahnke, K. (2010). Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nature Geoscience, 3(9), 622-626. https://doi.org/10.1038/ngeo931

    McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., & Brown-Leger, S. (2004, Apr 22). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), 834-837. https://doi.org/10.1038/nature02494

    Menviel, L., Spence, P., Yu, J., Chamberlain, M. A., Matear, R. J., Meissner, K. J., & England, M. H. (2018, Jun 27). Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat Commun, 9(1), 2503. https://doi.org/10.1038/s41467-018-04876-4

    Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008). Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies. Paleoceanography, 23(4), PA4201. https://doi.org/10.1029/2008pa001604

    Menviel, L., Timmermann, A., Timm, O. E., & Mouchet, A. (2011). Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings. Quaternary Science Reviews, 30(9-10), 1155-1172. https://doi.org/10.1016/j.quascirev.2011.02.005

    Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., & Schuur, E. A. G. (2019). Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

    Meredith, M. P., & Hogg, A. M. (2006). Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters, 33(16), L16608. https://doi.org/10.1029/2006gl026499

    Meredith, M. P., Naveira Garabato, A. C., Hogg, A. M., & Farneti, R. (2012). Sensitivity of the Overturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing. Journal of Climate, 25(1), 99-110. https://doi.org/10.1175/2011jcli4204.1

    Milankovitch, M. (1941). Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, Royal Serbian Academy Special Publication 132, Belgrade, Serbia.

    Miller, G. H., Wolfe, A. P., Steig, E. J., Sauer, P. E., Kaplan, M. R., & Briner, J. P. (2002). The Goldilocks dilemma: big ice, little ice, or “just-right” ice in the Eastern Canadian Arctic. Quaternary Science Reviews, 21(1-3), 33-48. https://doi.org/10.1016/s0277-3791(01)00085-3

    Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., & Barnola, J. M. (2001, Jan 5). Atmospheric CO2 concentrations over the last glacial termination. Science, 291(5501), 112-114. https://doi.org/10.1126/science.291.5501.112

    Morrison, A. K., Frölicher, T. L., & Sarmiento, J. L. (2015). Upwelling in the Southern Ocean. Physics Today, 68(1), 27-32. https://doi.org/10.1063/pt.3.2654

    Morrison, A. K., Hogg, A. M., & Ward, M. L. (2011). Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing. Geophysical Research Letters, 38(14), L14602. https://doi.org/10.1029/2011gl048031

    Morrison, A. K., & McC. Hogg, A. (2013). On the Relationship between Southern Ocean Overturning and ACC Transport. Journal of Physical Oceanography, 43(1), 140-148. https://doi.org/10.1175/jpo-d-12-057.1

    Munday, D. R., Johnson, H. L., & Marshall, D. P. (2013). Eddy Saturation of Equilibrated Circumpolar Currents. Journal of Physical Oceanography, 43(3), 507-532. https://doi.org/10.1175/jpo-d-12-095.1

    Nadeau, L.-P., Ferrari, R., & Jansen, M. F. (2019). Antarctic Sea Ice Control on the Depth of North Atlantic Deep Water. Journal of Climate, 32(9), 2537-2551. https://doi.org/10.1175/jcli-d-18-0519.1

    Nelson, C. S., Hendy, I. L., Neil, H. L., Hendy, C. H., & Weaver, P. P. E. (2000). Last glacial jetting of cold waters through the Subtropical Convergence zone in the Southwest Pacific off eastern New Zealand, and some geological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 156(1-2), 103-121. https://doi.org/10.1016/s0031-0182(99)00134-0

    Ninnemann, U. S., & Charles, C. D. (2002). Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth and Planetary Science Letters, 201(2), 383-396. https://doi.org/10.1016/s0012-821x(02)00708-2

    Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., & Kothavala, Z. (2006). Last Glacial Maximum and Holocene Climate in CCSM3. Journal of Climate, 19(11), 2526-2544. https://doi.org/10.1175/jcli3748.1

    Otto-Bliesner, B. L., Hewitt, C. D., Marchitto, T. M., Brady, E., Abe-Ouchi, A., Crucifix, M., Murakami, S., & Weber, S. L. (2007). Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophysical Research Letters, 34(12), L12706. https://doi.org/10.1029/2007gl029475

    Otto-Bliesner, B. L., Russell, J. M., Clark, P. U., Liu, Z., Overpeck, J. T., Konecky, B., deMenocal, P., Nicholson, S. E., He, F., & Lu, Z. (2014, Dec 5). Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science, 346(6214), 1223-1227. https://doi.org/10.1126/science.1259531

    Peeters, F. J., Acheson, R., Brummer, G. J., De Ruijter, W. P., Schneider, R. R., Ganssen, G. M., Ufkes, E., & Kroon, D. (2004, Aug 5). Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature, 430(7000), 661-665. https://doi.org/10.1038/nature02785

    Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) Model and GRACE. Annual Review of Earth and Planetary Sciences, 32(1), 111-149. https://doi.org/10.1146/annurev.earth.32.082503.144359

    Pena, L. D., Goldstein, S. L., Hemming, S. R., Jones, K. M., Calvo, E., Pelejero, C., & Cacho, I. (2013). Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30kyr. Earth and Planetary Science Letters, 368, 20-32. https://doi.org/10.1016/j.epsl.2013.02.028

    Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., & Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. https://doi.org/10.1038/20859

    Placzek, C., Quade, J., & Patchett, P. J. (2006). Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geological Society of America Bulletin, 118(5-6), 515-532. https://doi.org/10.1130/b25770.1

    Prell, W. L., Hutson, W. H., Williams, D. F., Bé, A. W. H., Geitzenauer, K., & Molfino, B. (1980). Surface Circulation of the Indian Ocean during the Last Glacial Maximum, Approximately 18,000 yr B.P. Quaternary Research, 14(3), 309-336. https://doi.org/10.1016/0033-5894(80)90014-9

    Resplandy, L., Bopp, L., Orr, J. C., & Dunne, J. P. (2013). Role of mode and intermediate waters in future ocean acidification: Analysis of CMIP5 models. Geophysical Research Letters, 40(12), 3091-3095. https://doi.org/10.1002/grl.50414

    Rojas, M. (2013). Sensitivity of Southern Hemisphere circulation to LGM and 4 × CO2 climates. Geophysical Research Letters, 40(5), 965-970. https://doi.org/10.1002/grl.50195

    Rojas, M., Moreno, P., Kageyama, M., Crucifix, M., Hewitt, C., Abe-Ouchi, A., Ohgaito, R., Brady, E. C., & Hope, P. (2009). The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Climate Dynamics, 32(4), 525-548. https://doi.org/10.1007/s00382-008-0421-7

    Ronge, T. A., Frische, M., Fietzke, J., Stephens, A. L., Bostock, H., & Tiedemann, R. (2021, Nov 11). Southern Ocean contribution to both steps in deglacial atmospheric CO2 rise. Sci Rep, 11(1), 22117. https://doi.org/10.1038/s41598-021-01657-w

    Rose, K. A., Sikes, E. L., Guilderson, T. P., Shane, P., Hill, T. M., Zahn, R., & Spero, H. J. (2010, Aug 26). Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature, 466(7310), 1093-1097. https://doi.org/10.1038/nature09288

    Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J., & Toggweiler, J. R. (2006). The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean. Journal of Climate, 19(24), 6382-6390. https://doi.org/10.1175/jcli3984.1

    Rutberg, R. L., & Broccoli, A. J. (2019). Response of the High‐Latitude Southern Hemisphere to Precessional Forcing: Implications for Pleistocene Ocean Circulation. Paleoceanography and Paleoclimatology, 34(7), 1092-1106. https://doi.org/10.1029/2019pa003598

    Saenko, O. A., Schmittner, A., & Weaver, A. J. (2002). On the Role of Wind-Driven Sea Ice Motion on Ocean Ventilation. Journal of Physical Oceanography, 32(12), 3376-3395. https://doi.org/10.1175/1520-0485(2002)032<3376:Otrowd>2.0.Co;2

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A., & Dunne, J. P. (2004, Jan 1). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427(6969), 56-60. https://doi.org/10.1038/nature02127

    Schmittner, A., Saenko, O. A., & Weaver, A. J. (2003). Coupling of the hemispheres in observations and simulations of glacial climate change. Quaternary Science Reviews, 22(5-7), 659-671. https://doi.org/10.1016/s0277-3791(02)00184-1

    Seidov, D., Barron, E., & Haupt, B. J. (2001). Meltwater and the global ocean conveyor: northern versus southern connections. Global and Planetary Change, 30(3-4), 257-270. https://doi.org/10.1016/s0921-8181(00)00087-4

    Shi, J.-R., Xie, S.-P., & Talley, L. D. (2018). Evolving Relative Importance of the Southern Ocean and North Atlantic in Anthropogenic Ocean Heat Uptake. Journal of Climate, 31(18), 7459-7479. https://doi.org/10.1175/jcli-d-18-0170.1

    Shi, J., & Yan, Q. (2019). Evolution of the Asian–African Monsoonal Precipitation over the last 21 kyr and the Associated Dynamic Mechanisms. Journal of Climate, 32(19), 6551-6569. https://doi.org/10.1175/jcli-d-19-0074.1

    Shin, S. I., Liu, Z., Otto-Bliesner, B., Brady, E., Kutzbach, J., & Harrison, S. (2003). A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dynamics, 20(2), 127-151. https://doi.org/10.1007/s00382-002-0260-x

    Shulmeister, J., Goodwin, I., Renwick, J., Harle, K., Armand, L., McGlone, M. S., Cook, E., Dodson, J., Hesse, P. P., Mayewski, P., & Curran, M. (2004). The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis. Quaternary International, 118, 23-53. https://doi.org/10.1016/S1040-6182(03)00129-0

    Siani, G., Michel, E., De Pol-Holz, R., Devries, T., Lamy, F., Carel, M., Isguder, G., Dewilde, F., & Lourantou, A. (2013). Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat Commun, 4, 2758. https://doi.org/10.1038/ncomms3758

    Sigman, D. M., Hain, M. P., & Haug, G. H. (2010, Jul 1). The polar ocean and glacial cycles in atmospheric CO(2) concentration. Nature, 466(7302), 47-55. https://doi.org/10.1038/nature09149

    Sime, L. C., Hodgson, D., Bracegirdle, T. J., Allen, C., Perren, B., Roberts, S., & de Boer, A. M. (2016). Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models. Climate of the Past, 12(12), 2241-2253. https://doi.org/10.5194/cp-12-2241-2016

    Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A. M., Graham, R. M., & Bopp, L. (2013). Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model-data comparison. Quaternary Science Reviews, 64, 104-120. https://doi.org/10.1016/j.quascirev.2012.12.008

    Skinner, L. C. (2009). Glacial-interglacial atmospheric CO<sub>2</sub> change: a possible "standing volume" effect on deep-ocean carbon sequestration. Climate of the Past, 5(3), 537-550. https://doi.org/10.5194/cp-5-537-2009

    Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., & Barker, S. (2010, May 28). Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328(5982), 1147-1151. https://doi.org/10.1126/science.1183627

    Skinner, L. C., Freeman, E., Hodell, D., Waelbroeck, C., Vazquez Riveiros, N., & Scrivner, A. E. (2021). Atlantic Ocean Ventilation Changes Across the Last Deglaciation and Their Carbon Cycle Implications. Paleoceanography and Paleoclimatology, 36(2). https://doi.org/10.1029/2020pa004074

    Skinner, L. C., Waelbroeck, C., Scrivner, A. E., & Fallon, S. J. (2014, Apr 15). Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc Natl Acad Sci U S A, 111(15), 5480-5484. https://doi.org/10.1073/pnas.1400668111

    Skjelvan, I., Johannessen, T., & Miller, L. A. (1999). Interannual variability of fCO2 in the Greenland and Norwegian Seas. Tellus B: Chemical and Physical Meteorology, 51(2), 477-489. https://doi.org/10.3402/tellusb.v51i2.16327

    Sloyan, B. M., & Kamenkovich, I. V. (2007). Simulation of Subantarctic Mode and Antarctic Intermediate Waters in Climate Models. Journal of Climate, 20(20), 5061-5080. https://doi.org/10.1175/jcli4295.1

    Spero, H. J., & Lea, D. W. (2002, Apr 19). The cause of carbon isotope minimum events on glacial terminations. Science, 296(5567), 522-525. https://doi.org/10.1126/science.1069401

    Stein, K., Timmermann, A., Kwon, E. Y., & Friedrich, T. (2020, Mar 3). Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks. Proc Natl Acad Sci U S A, 117(9), 4498-4504. https://doi.org/10.1073/pnas.1908670117

    Stephens, B. B., & Keeling, R. F. (2000, Mar 9). The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature, 404(6774), 171-174. https://doi.org/10.1038/35004556

    Stocker, T. F. (1998). CLIMATE CHANGE:The Seesaw Effect. Science, 282(5386), 61-62. https://doi.org/10.1126/science.282.5386.61

    Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., & Weber, S. L. (2006). Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. Journal of Climate, 19(8), 1365-1387. https://doi.org/10.1175/jcli3689.1

    Straub, D. N. (1993). On the Transport and Angular Momentum Balance of Channel Models of the Antarctic Circumpolar Current. Journal of Physical Oceanography, 23(4), 776-782. https://doi.org/10.1175/1520-0485(1993)023<0776:Ottaam>2.0.Co;2

    Sun, S., Eisenman, I., & Stewart, A. L. (2016). The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification. Geophysical Research Letters, 43(15), 8124-8132. https://doi.org/10.1002/2016gl070058

    Talley, L. (2013). Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports. Oceanography, 26(1), 80-97. https://doi.org/10.5670/oceanog.2013.07

    Talley, L. D., Pickard, G. L., Emery, W. J., & Swift, J. H. (2011). Descriptive Physical Oceanography: An Introduction (Sixth ed.) [Book]. Elsevier Ltd.

    Timmermann, A., Friedrich, T., Timm, O. E., Chikamoto, M. O., Abe-Ouchi, A., & Ganopolski, A. (2014). Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka*. Journal of Climate, 27(5), 1863-1875. https://doi.org/10.1175/jcli-d-13-00311.1

    Timmermann, A., Okumura, Y., An, S. I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S. P., & Yin, J. (2007). The Influence of a Weakening of the Atlantic Meridional Overturning Circulation on ENSO. Journal of Climate, 20(19), 4899-4919. https://doi.org/10.1175/jcli4283.1

    Timmermann, A., Timm, O., Stott, L., & Menviel, L. (2009). The Roles of CO2 and Orbital Forcing in Driving Southern Hemispheric Temperature Variations during the Last 21 000 yr. Journal of Climate, 22(7), 1626-1640. https://doi.org/10.1175/2008jcli2161.1

    Toggweiler, J. R., & Lea, D. W. (2010). Temperature differences between the hemispheres and ice age climate variability. Paleoceanography, 25(2), PA2212. https://doi.org/10.1029/2009pa001758

    Toggweiler, J. R., Russell, J. L., & Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21(2), PA2005. https://doi.org/10.1029/2005pa001154

    Tschumi, T., Joos, F., & Parekh, P. (2008). How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study. Paleoceanography, 23(4), PA4208. https://doi.org/10.1029/2008pa001592

    Valdes, P. J. (2000). South American palaeoclimate model simulations: how reliable are the models? Journal of Quaternary Science, 15(4), 357-368. https://doi.org/10.1002/1099-1417(200005)15:4<357::Aid-jqs547>3.0.Co;2-8

    Volker, C., & Kohler, P. (2013, Dec). Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum. Paleoceanography, 28(4), 726-739. https://doi.org/10.1002/2013PA002556

    Waelbroeck, C., Paul, A., & Kucera, M. (2009). Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience, 2(2), 127-132. https://doi.org/10.1038/ngeo411

    Wainer, I., Clauzet, G., Ledru, M. P., Brady, E., & Otto-Bliesner, B. (2005). Last Glacial Maximum in South America: Paleoclimate proxies and model results. Geophysical Research Letters, 32(8), L08702. https://doi.org/10.1029/2004gl021244

    Watson, A. J., Vallis, G. K., & Nikurashin, M. (2015). Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nature Geoscience, 8(11), 861-864. https://doi.org/10.1038/ngeo2538

    Weaver, A. J., Saenko, O. A., Clark, P. U., & Mitrovica, J. X. (2003, Mar 14). Meltwater pulse 1A from Antarctica as a trigger of the Bolling-Allerod warm interval. Science, 299(5613), 1709-1713. https://doi.org/10.1126/science.1081002

    Weaver, P. P. E., Carter, L., & Neil, H. L. (1998, Feb). Response of surface water masses and circulation to late Quaternary climate change east of New Zealand. Paleoceanography, 13(1), 70-83. <Go to ISI>://WOS:000071657300008

    Williams, N. J., Harle, K. J., Gale, S. J., & Heijnis, H. (2006). The vegetation history of the last glacial–interglacial cycle in eastern New South Wales, Australia. Journal of Quaternary Science, 21(7), 735-750. https://doi.org/10.1002/jqs.1069

    Wolfe, C. L., & Cessi, P. (2011). The Adiabatic Pole-to-Pole Overturning Circulation. Journal of Physical Oceanography, 41(9), 1795-1810. https://doi.org/10.1175/2011jpo4570.1

    Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Rothlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., & Gaspari, V. (2002). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440(7083), 491-496. https://doi.org/10.1038/nature04614

    Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Rothlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., & Gaspari, V. (2006, Mar 23). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440(7083), 491-496. https://doi.org/10.1038/nature04614

    Wyrwoll, K.-H., Dong, B., & Valdes, P. (2000). On the position of southern hemisphere westerlies at the Last Glacial Maximum: an outline of AGCM simulation results and evaluation of their implications. Quaternary Science Reviews, 19(9), 881-898. https://doi.org/10.1016/s0277-3791(99)00047-5

    Yin, J. H., & Battisti, D. S. (2001). The Importance of Tropical Sea Surface Temperature Patterns in Simulations of Last Glacial Maximum Climate. Journal of Climate, 14(4), 565-581. https://doi.org/10.1175/1520-0442(2001)014<0565:Tiotss>2.0.Co;2

    Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., & Mayer, M. (2019). The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Science, 15(3), 779-808. https://doi.org/10.5194/os-15-779-2019

    QR CODE
    :::