| 研究生: |
邱雁 Yen Chiu |
|---|---|
| 論文名稱: | Impact of Individual Variants in Cell Lengths on the Dynamics of Bacterial Swarming |
| 指導教授: |
田溶根
Yonggun Jun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 細菌群泳 、個體差異 、多尺寸 |
| 外文關鍵詞: | Bacterial swarming, Individual variants, Multi-sizes |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
所謂的細菌群泳是(長)桿狀細菌在類固體上的一種快速大規模遷徙。基於 群泳依賴於群體感知的基本知識,以及在此之前發生的一系列分化,包括細 胞伸長和側鞭毛增加,先前的研究使用不同的突變菌株來獨立地操縱細胞的 長寬比。儘管一些研究試圖透過混合兩種不同的物種或菌株來創造一個更接 近自然群集條件的環境,但他們低估並忽略了個體差異中細胞大小對動力學 的影響。
因此,在本研究中,我們提出了一個引人入勝問題,即單一菌株中多種 尺寸的細菌的演化優勢為何。為了解決這個問題,我們使用絲狀細菌菌株 Vibrio alginolyticus (YM19) 實驗研究其單層群泳動力學。它們巨大的個體長 度差異使我們能夠在個別追蹤後將它們分為五個長度組。研究發現,具有異 質分佈的較長細胞會對齊鄰居並建立群泳團簇,快速且持久地導航。同時, 相對均勻分佈的較短細菌容易受到鄰居的影響,所形成的區域就像不同群泳 團簇之間的緩衝區,間接輔助群泳團簇導航並防止堵塞。因此,在同一菌株 內,不同長度的細菌在同一生態位中發揮不同的作用。
Bacterial swarming is a rapid mass migration of rod-like bacteria on the semi-solid. Based on the fundamental knowledge that swarming is quorum sensing dependent, and a series differentiation including the elongation and increased lateral flagella happens before swarming, previous studies used differ- ent mutated strains to manipulate the aspect ratios of cells, separately. Despite some studies attempting to create an environment closer to nature-swarming conditions by mixing two different species and strains, they underestimate and disregard the individual variants in cell sizes.
In this work, we raise an intriguing question about what the evolutionary advantage takes place in multi-sizes of bacteria in a single strain. To unravel this issue, we experimentally investigated the monolayer swarming dynamics using a filamentous bacteria strain Vibrio alginolyticus (YM19). Their vast in- dividual variant in lengths enable us to categorize them into five length groups, after individual tracing. It is found that the longer cells with heterogeneous distribution align the neighbors and structure the swarming clusters to navigate rapidly and persistently; meanwhile, the shorter cells in homogeneous distribution are easily affected by the neighbors, which act like the buffer between different swarming clusters indirectly assist the navigation of swarming and prevent jamming. Therefore, within the same strain, the bacteria in different lengths play different roles in the same niche.
1. Jose, R. & Singh, V. Swarming in Bacteria: A Tale of Plasticity in Motility Behavior. J. Indian Inst. Sci 100, 515–524 (2020).
2. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol 8, 9 (2019).
3. Benisty, S., Ben-Jacob, E., Ariel, G. & Be’er, A. Antibiotic-Induced Anoma- lous Statistics of Collective Bacterial Swarming. Phys. Rev. Lett. 114, 018105 (2015).
4. Be’er, A. et al. A phase diagram for bacterial swarming. Communication physics 3, 66 (2020).
5. Zhang, H. P., Be’er, A., Florin, E. L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. PNAS 107, 31 (2010).
6. Ilkanaiv, B., Kearns, D. B., Ariel, G. & Be’er, A. Effect of Cell Aspect Ratio on Swarming Bacteria. Phys. Rev. Lett. 118, 158002 (2017).
7. Ariel, G., Be’er, A. & Reynolds, A. Chaotic Model for Lévy Walks in Swarming Bacteria. Phys. Rev. Lett. 118, 228102 (2017).
8. Patteson, A. E., Gopinath, A. & Arratia, P. E. The propagation of active- passive interfaces in bacterial swarms. Nature Communications 9, 5373 (2018).
9. Sidortsov, M., Morgenstern, Y. & Be’er, A. Role of tumbling in bacterial swarming. Phys. Rev. E 96, 022407 (2017).
10. Li, H. et al. Data-driven quantitative modeling of bacterial active nematics.
PNAS 116, 3 (2018).
11. Copenhagen, K., Alert, R., Wingreen, N. S. & Shaevitz, J. W. Topologi- cal defects promote layer formation in Myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2021).
12. Filella, A., Nadal, F., Sire, C., Kanso, E. & Eloy, C. Model of Collec- tive Fish Behavior with Hydrodynamic Interactions. Phys. Rev. Lett. 120, 198101 (2018).
13. Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. PNAS 105, 4 (2008).
14. Parrish, J. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 5411 (1999).
15. Gullan, P. J. & Cranston, P. S. The Insects: An Outline of Entomology Third, 114–115 (Wiley-Blackwell, Hoboken, NJ, 2005).
16. Et al., B. S. Phase transition in the collective migration of tissue cells: Experiment and model. Phys. Rev. E 74, 061908 (2006).
17. Creppy, A., Praud, O., Druart, X., Kohnke, P. L. & Plouraboué, F. Tur- bulence of swarming sperm. Phys. Rev. E 92, 032722 (2015).
18. Liu, C. Y., Chen, H. Y. & I, L. Scale-free aggregation and interface fluctua- tions of cancer clusters in cancer-endothelial cell mixtures: From the dilute state to confluent monolayer. Phys. Rev. Research 3, L032050 (2021).
19. Kudrolli, A., Lumay, G., Volfson, D. & Tsimring, L. S. Swarming and Swirling in Self-Propelled Polar Granular Rods. Phys. Rev. Lett. 100, 058001 (2008).
20. Zheng, C. & Tönjes, R. Noise-induced swarming of active particles. PRE 106, 064601 (2022).
21. Abbaspour, L., Malek, A., Karpitschka, S. & Klumpp, S. Effects of di- rection reversals on patterns of active filaments. Phys. Rev. Research 5, 013171 (2023).
22. Jose, A., Ariel, G. & Be’er, A. Physical characteristics of mixed-species swarming colonies. Phys. Rev. E 105, 064404 (2022).
23. Peled, S. et al. Heterogeneous bacterial swarms with mixed lengths. Phys. Rev. E 103, 032413 (2021).
24. Young, K. D. The Selective Value of Bacterial Shape. Microbiol. Mol. Biol. Rev. 70, 660 (2006).
25. Campo, M. et al. A Constant Size Extension Drives Bacterial Cell Size Homeostasis. Cell 159 (2014).
26. Starling Murmurations https://www.richardjacksonsgarden.co.uk/ starling-murmurations/.
27. Why Do Bees Swarm? https://backyardbeekeeping.iamcountryside. com/health-pests/why-do-bees-swarm/.
28. BlueSwarm: Decentralized Robotic Fish Swarm Together https://arducam. medium.com/blueswarm-decentralized-robotic-fish-swarm-together- which-uses-arducam-multi-camera-adapter-and-787c450864e9.
29. Auer, G. K. et al. Bacterial Swarming Reduces Proteus mirabilis and Vib- rio parahaemolyticus Cell Stiffness and Increases -Lactam Susceptibility. mBio 10, 5 (2019).
30. Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20, 4 (1996).
31. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72 (2003).
32. Reilly, G. D., Reilly, C. A., Smith, E. G. & Baker-Austin, C. Vibrio alginolyticus-associated wound infection acquired in British waters. Euro Surveill 16, 42 (2011).
33. Atsumi, T. et al. Effect of Viscosity on Swimming by the Lateral and Polar Flagella of Vibrio alginolyticus. J. Bacteriol. 178, 16 (1996).
34. Cutler, K. J. et al. Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nature Methods 19, 1438–1448 (2022).
35. Cortacero, K. et al. Evolutionary design of explainable algorithms for biomedical image segmentation. Nature Communications 14, 7112 (2023).
36. Smith, M. B. et al. Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton (Hoboken) 67, 693–705 (2010).
37. Püspöki, Z., Storath, M., Sage, D. & Unser, M. in Advances in Anatomy,
Embryology and Cell Biology chap. 3 (Springer International Publishing,
2016)