| 研究生: |
呂駿杰 Chun-Chieh Lu |
|---|---|
| 論文名稱: | Importance sampling for Value-at-Risk computations under factor model |
| 指導教授: |
傅承德
Cheng-Der Fuh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 重要性採樣 、因子模型 、投資組合風險值 、多元 分布 |
| 外文關鍵詞: | Importance sampling, factor model, portfolio VaR, multivariate distribution |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風險價值(VaR),它被定義為一個給定的時間範圍內利潤和
損失分佈的條件分位數。雖然蒙地卡羅模擬是評估投資組合
風險價值最有效的方法,這種方法主要的缺點在於需要大量的
計算需求。所以在本文中,我們考慮在因子模型之下的重要性
採樣。此外,我們對風險因子建模在多元常態分配和多元t分
配。在此假設之下,引用upper bound 和optimal tilting 兩
種方法來尋找新測度的最佳解。最後,比較重要性採樣和蒙地
卡羅的相對效率。我們可以看出重要性採樣顯著地比蒙地卡羅
來的更好。
Value-at-Risk (VaR), which is defined as the conditional quantile of the profit-and-loss distribution for a given time horizon. Although the Monte Carlo simulation is the most powerful method to evaluate portfolio VaR, a major drawback of this method is that it is computationally demanding. So in this paper, we consider the efficient importance sampling method under factor model. Furthermore, we model the risk factors with multivariate normal
distribution and multivariate t distribution. Among this assumptions, we introduce upper bound method and optimal tilting method to find the alternative measure Q. In the end, we give the relative efficiency of importance sampling method and Monte Carlo method. We show that the importance sampling method is significantly better than Monte Carlo method.
Alessi, L., Barigozzi, M. (2009) Estimation and Forecasting in Large
Datasets with Conditionally Heteroskedastic Dynamic Common Factors. ECB Working Paper.
Aramonte, S., Rodriguez, M. G., Wu, J. (2013) Dynamic factor value-
at-Risk for large heteroskedastic portfolios. Journal of Banking and
Finance 37: 4299-4309.
Bai, J., Ng, S. (2002) Determining the number of factors in approximate
factor models. Econometrica 70: 191-221.
Bai, J., Ng, S. (2003) Inferential theory for factor models of large dimensions. Econometrica 71: 135-171.
Davison, A. C. (1988) Discussion of papers by D. V. Hinkley and
by T. J. DiCiccio & J. P. Romano. J. R. Statist. Soc. B 50, 356-357.
Do, K. A., P. Hall. (1991) On importance resampling for the bootstrap. Biometrika 78: 161-167.
Due, D., J. Pan. (1997) An overview of Value-at-Risk. The Journal of Derivatives 7-49.
Engle, R. F. (2002) Dynamic conditional correlation : a simple class of multivariate generalized autoregressive conditional Heteroskedasticity models. Journal of Business and Economic Statistics 20: 339-350.
Engle, R. F., Sheppard, K. (2008) Evaluating the Specication of
Covariance Models for Large Portfolios. NYU Working Paper.
Forni, M. (2000) The generalized dynamic factor model : identication and estimation. Review of Economics and Statistics 82: 540-554.
Forni, M. (2005) The generalized dynamic factor model : one-sided estimation and forecasting. Journal of the American Statistical Association 100: 830-840.
Forni, M. (2009) Opening the black box : structural factor models with large cross section. Econometric Theory 25: 1319-1347.
Fuh, C. D., I. Hu. (2004) Efficient importance sampling for events of moderate deviations with applications. Biometrika 91: 471-490.
Fuh, C. D., I. Hu. (2007) Estimation in hidden Markov models via
efficient importance sampling. Bernoulli 13: 492-513.
Fuh, C. D., I. Hu., Hsu, Y. H., Wang, R. H. (2011) Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors. Operations Research 59: 1395-1406.
Fuh, C. D., Teng, H. W., Wang, R. H. (2013) Efficient Importance
Sampling for Rare Event Simulation with Applications.
Glasserman, P., P. Heidelberger. (2000) Variance reduction techniques for estimating Value-at-Risk. Management Science 46: 1349-1364.
Glasserman, P., P. Heidelberger (2002) Portfolio Value-at-Risk with heavy-tailed risk factors. Mathematical Finance 12: 239-269.
Glasserman, P. (2004) Monte Carlo Methods in Financial Engineering, Springer-Verlag, New York.
Hallin, M., Liska, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of Business and Economic Statistics 102(478): 603-617.
Liu, C., Rubin, D. B. (1995) ML Estimation of The t Distribution Using EM and its Extension, ECM and ECME. Statistica Sinica 5: 19-39.
Marta, B., Michele, M. (2010) Maximum Likelihood Estimation of Factor Models On Datasets with Arbitrary Pattern of Missing Data. ECB
Working Paper.
Stock and Watson. (2002) Marcoeconomic forecsting using diffusion indexes. Journal of Business and Economic Statistics 20: 147-162.
Sentana, E., Calzolari, G. (2008) Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks.
Journal of Business and Economic Statistics 20: 147-162.
Vasja, S. (2015) Macroeconomic Applications with Factor Models.