跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡智偉
Chih-Wei Chien
論文名稱: 具指向性微結構之設計
The Study of Micro-Structured Arrays with High Directionality
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 發光二極體微結構指向性
外文關鍵詞: Light emitting diode, Directionality, Micro-structured
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們利用有限時域差分法,來分析微米以下週期性結構之繞射特性,並針對藍光Thin-GaN LED設計具指向性之繞射光學結構。論文內容主要分為兩大部分:(一) 在數值計算上,我們將以有限時域差分法做為主要計算方法,並分析不同結構參數對指向性之貢獻與影響。(二) 以此優化之週期性結構參數做二維排列,進而設計具指向性、高效率藍光Thin-GaN LED。


    In this thesis, we apply finite-difference time domain algorithm to analyze the characteristic of diffraction of the sub-wavelength periodic structure. Accordingly, we design optical diffraction structures with high directionality for Thin-GaN blue LED.
    The content of this thesis can be divided into two parts: a.)In numerical calculation, we use finite-difference time domain algorithm to calculate the directionality of various structures, and try to optimize the structure. b.)According to the optimized result, we extend the structure to a two-dimensional form. Finally we try to design the structure for a Thin-GaN blue LED with high directionality and high efficiency.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 XIII 第一章 緒論 1 1.1 LED固態照明 1 1.2 LED應用於高準直性光學系統之優勢 3 1.3 論文架構及大綱 7 第二章 LED光源特性之探討 8 2.1 LED 發光原理 8 2.2 LED 發光效率 10 2.2.1 基本名詞介紹 10 2.2.2 利用微結構提升發光效率 13 2.3 LED發光光場與光型 19 2.4 光型調制之背景介紹 23 第三章 次波長結構特性分析 28 3.1 基本原理介紹 28 3.1.1 繞射原理 28 3.1.2 有限時域差分法 31 3.1.3 完美吸收邊界介紹 35 3.2 一維結構之特性分析 36 3.2.1 結構週期對正向光萃取之影響 36 3.2.2孔洞直徑調制 48 3.2.3 孔洞深度調制 51 3.3 一維結構之遠場分佈 52 第四章 次波長結構用於LED之設計 61 4.1 前言 61 4.2 光源佈局方法 61 4.3 二維結構之排列方式 66 4.3.1三角晶格排列 66 4.3.2四角晶格排列 69 4.3.3 A7準光子晶體排列 72 4.4 遠場分佈之模擬結果 77 4.5 LED指向性與效率分析 80 第五章 結論 88 參考文獻 89 中英文名詞對照表 93

    [1] H.J.Round, Electrical World 49, 309, 1907.
    [2] N. Holonyak, Jr. and S. F. Bevaqua, “Coherent(visible) light emission from Ga(As1-xPx)
    junction,” Appl. Phys. Lett. 1, 82 (1962).
    [3] A. Zukauskas, Introduction to Solid-State Lighting, (John Wiley &Sons, New York, 2002).
    [4] M. G. Craford, “LEDs for solid state lighting and other emerging applications: status,
    trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
    [5] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double
    -heterostructure blue-green light-emitting diodes,” J. Appl. Phys. 76, 8180-8191 (1994).
    [6] LEDinside, http://www.LEDinside.com/
    [7] Luminus, http://www.luminus.com/.
    [8] G. Harbers, S. Paolini and M. Keuper, “Performance of high-power LED illuminators in Projection display,” Lumileds Lighting website.
    [9] K. Li, S. Inatsugu, “Etendue efficient coupling of an array of LEDs for projection display,” Proc. SPIE 5740, 36-40 (2005).
    [10] Wikipedia, http://zh.wikipedia.org.
    [11] Lumileds Lighting, http://www.lumileds.com.
    [12] E.F. Schubert, Light Emitting Diodes, (Cambridge University Press, Cambridge, 2003).
    [13] Nichia, http://www.nichia.com.
    [14] B. E. A. Saleh, r M. C. Teich, Fundamentals of photonics, (John Wiley & Sons, 1991).
    [15] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous
    emission quantum efficiency, 99.7% internally and 72%externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys.Lett. 62, 131 (1993).
    [16] A. Köck, E. Gornik, M. Hauser and W. Beinsting, “Strongly directional emission from
    AlGaAs/GaAs light-emitting diodes, ” Appl. Phys. Lett. 57, 2327 (1990).
    [17] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitrides blue microdisplays,”
    Appl. Phys. Lett., 78, 9 ( 2001).
    [18] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Optics Express 15, 6670-6676 (2007).
    [19] R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Dohler, and P. Heremans, “Light extraction mechanisms in high efficiency surface textured light emitting diodes,” IEEE J. Sel. Top. Quan. Elec. 8, 248-255 (2002).
    [20] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P, Denbaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
    [21] D. S. Wu, S. H. Huang, R. H. Horng, C. Y. Hsieh, and K. W. Yen, “High efficient InGaN/GaN LEDs with double-sided textured surfaces and omni-directional mirror structure,” Proc. of SPIE 6894, 68941E-1 (2008).
    [22] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett. 89, 071109 (2006).
    [23] K. Bao, X. N. Kang, B. Zhang, T. Dai, Y. J. Sun, Q. Fu, G. J. Lian, G. C. Xiong, G. Y. Zhang, and Y. Chen, “Improvement of light extraction from GaN-based thin-film light-emitting diodes by patterning undoped GaN using modified laser lift-off,” Appl. Phys. Lett. 92, 141104 (2008).
    [24] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueler, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160-175 (2007).
    [25] Y. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “High brightness GaN-based light -emitting diodes,” J. Disp. Technol. 3, 118-125 (2007).
    [26] E.Ybalonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58 2059 (1987).
    [27] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2468 (1987).
    [28] 欒丕綱,陳啟昌,光子晶體-從蝴蠂翅膀到奈米光子學,五南出版社,台北市,民國95年。
    [29] A. David, T. Fujii, R. Sharma, K. McGrody, S. Nakamura, S. Denbaars, E. L. Hu, and C. Weisbuch, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
    [30] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296 (2005).
    [31] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036-1038 (1999).
    [32] H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quan. Elec. 8, 231-237 (2002).
    [33] H. Ichikawa, and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84, 457-459 (2004).
    [34] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “III-nitride photonic crystals,” Appl. Phys. Lett. 83, 1231-1233 (2003).
    [35] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466-468 (2004).
    [36] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes,” Appl. Phys. Lett. 85, 142-144 (2004).
    [37] Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattice on enhancement of surface light extraction,” Appl. Phys. Lett. 88, 171103 (2006).
    [38] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographyically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, (2005).
    [39] A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic -crystals for high extraction efficiency LEDs,” J. Disp. Technol. 3, 133-148 (2007).
    [40] Cree, http://www.cree.com/index.asp.
    [41] M. D. B. Charlton, M. E. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modeling and optimization,” Proc. of SPIE 6486, 64860R-1 (2007) .
    [42] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885-3887 (2004).
    [43] Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
    [44] Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys. 96, 7629-7636 (2004).
    [45] Y. J. Lee, S. H. Kim, G. H. Kim, Y. H. Lee, S. H. Cho, Y. W. Song, Y. C. Kim, and Y. R. Do, ”Far-field radiation of photonic crystal organic light-emitting diode,” OPTICS EXPRESS 15, 5864-5870 (2005).
    [46] Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 2002).
    [47] E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” J. Opt. Soc. Am. A 19, 702-715 (2002).
    [48] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [49] Lumerical, http://www.lumerical.com/fdtd.php.
    [50] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation 14, 302-307 (1966).
    [51] A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 1995).
    [52] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computational physics 114, 185-200 (1994).
    [53] Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).

    QR CODE
    :::