跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許竣瑝
Jiun-Huang Hsu
論文名稱: Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
指導教授: 江村剛志
Takeshi Emura
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 69
中文關鍵詞: 曼-惠特尼檢定關聯結構關聯結構構圖像估計量鞅論相依設限資料兩樣本問題
外文關鍵詞: Mann-Whitney test, Copula, Copula-graphic estimator, Martingale, Dependent censoring, Two-sample problem
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曼-惠特尼檢定是一種用來比較兩組平均數是否一樣的無母數方法。對於右設限(Right censored)存活資料,曼-惠特尼影響(Mann-Whitney effect)是一種有效比較兩組存活時間是否相同的無母數方法。然而,在Efron (1967)、Koziol 及 Jia (2009)和Dobler 及 Pauly (2018)中提到曼-惠特尼影響的估計量會有不一致性,在存活時間跟設限時間不獨立的情況。在這篇論文中,我們推導出在存活時間跟設限時間相依下,曼-惠特尼影響的估計理論值。在給定存活時間跟設限時間相依為一個關聯結構(Copula)模型時,我們也推導出了曼-惠特尼影響估計量的漸進誤差。在假設的關聯結構(Copula)模型下,我們運用關聯結構構圖像法(Copula-graphic)去提供了一個新的曼-惠特尼影響估計量。我們運用了鞅論(Martingale)去證明這個新的估計量具有一致性以及大樣本常態漸進的性質。此外,當遇到假設的關聯結構(Copula)模型不符合實際的資料時,我們額外提供一個新的方法可以有效的鑑定兩個群體的存活時間是否一樣。最後,我們用模擬的方式去驗證我們的方法,然後套用到真實資料上並且說明結論。


    The Mann-Whitney test is a nonparametric test for comparing two groups. For analysis of right-censored survival data, the Mann-Whitney effect is a measure for comparing the two survival times from the two groups. However, the two-sample test based on the estimator of the Mann-Whitney effect (Efron 1967; Koziol and Jia 2009; Dobler and Pauly 2018) can be inconsistent when the independent censoring assumption fails to hold. In this thesis, we derive the theoretical properties of the estimator of the Mann-Whitney effect under dependent censoring. We derive the asymptotic bias of the Mann-Whitney effect estimator when dependence between survival time and censoring time is modeled by a copula. We also propose a new estimator of the Mann-Whitney effect by applying the copula-graphic estimator under assumed copula models. We prove the consistency and asymptotic normality of the proposed estimator by a martingale theory. We propose a new test that is asymptotically valid under a possibly misspecified copula model. Simulations are conducted to verify the proposed method, and a real data example is given for illustration.

    Contents 摘要 I Abstract II 誌謝辭 III Contents IV Chapter 1: Introduction 1 Chapter 2: Background 3 2.1 Two-sample comparison 3 2.2 Mann-Whitney effect 5 Chapter 3: Dependent censoring 7 3.1 Bias under dependent censoring 7 3.2 Copula-graphic (CG) estimator 12 3.3 Consistent estimation of under dependent censoring 14 3.4 Bias of under a misspecified copulas 16 Chapter 4: Simulation 23 4.1 Simulation design 23 4.2 Simulation result 25 Chapter 5: Data analysis 29 Chapter 6: Concluding remarks 33 Appendix 35 Appendix A: Asymptotic bias 35 Appendix B: Data generation under copula models 40 Appendix C: Simulation for comparing the KM estimator and CG estimator 42 Appendix D: The Mann-Whitney effect 50 Appendix E: The code for Data Analysis 51 REFERENCES 60

    Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 701-726.
    Bakoyannis, G., & Touloumi, G. (2015). Impact of dependent left truncation in semiparametric competing risks methods: a simulation study. Communications in Statistics-Simulation and Computation, 46(3), 2025-2042.
    Braekers, R., & Veraverbeke, N. (2005). A copula‐graphic estimator for the conditional survival function under dependent censoring. Canadian Journal of Statistics, 33(3), 429-447.
    Chakraborti, S. (1990). A one-sided test of homogeneity against simple tree alternative for right-censored data. Communications in Statistics-Simulation and Computation, 19(3), 879-889.
    Chakraborti, S., & Desu, M. (1991). Linear rank tests for comparing treatments with a control when data are subject to unequal patterns of censorship. Statistica Neerlandica, 45(3), 227-254.
    Chen, Y.-I. (1994). A generalized steel procedure for comparing several treatments with a control under random right-censorship. Communications in Statistics-Simulation and Computation, 23(1), 1-16.
    Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
    de Uña-Álvarez, J., & Veraverbeke, N. (2013). Generalized copula-graphic estimator. Test, 22(2), 343-360.
    de Uña-Álvarez, J., & Veraverbeke, N. (2017). Copula-graphic estimation with left-truncated and right-censored data. Statistics, 51(2), 387-403.
    Dobler, D., & Pauly, M. (2018). Bootstrap-and permutation-based inference for the Mann–Whitney effect for right-censored and tied data. Test, 27(3), 639-658.
    Efron, B. (1967). The two sample problem with censored data. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
    Emura, T., & Chen, Y.-H. (2016). Gene selection for survival data under dependent censoring: a copula-based approach. Statistical methods in medical research, 25(6), 2840-2857.
    Emura, T., & Chen, Y.-H. (2018). Analysis of Survival Data with Dependent Censoring: Copula-Based Approaches: Springer.
    Emura, T., Matsui, S., & Chen, H.-Y. (2019). compound. Cox: univariate feature selection and compound covariate for predicting survival. Computer methods and programs in biomedicine, 168, 21-37.
    Emura, T., & Michimae, H. (2017). A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environmental and ecological statistics, 24(1), 151-173.
    Emura, T., & Murotani, K. (2015). An algorithm for estimating survival under a copula-based dependent truncation model. Test, 24(4), 734-751.
    Emura, T., & Wang, W. (2012). Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. Journal of Multivariate Analysis, 110, 171-188.
    Farlie, D. J. (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47(3/4), 307-323.
    Fleming, T. R., & Harrington, D. P. (2011). Counting processes and survival analysis (Vol. 169): John Wiley & Sons.
    Gumbel, E. J. (1958). Statistics of extremes: Courier Corporation.
    Gumbel, E. J. (1960). Distributions des valeurs extremes en plusiers dimensions. Publ. Inst. Statist. Univ. Paris, 9, 171-173.
    Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457-481.
    Koziol, J. A., & Jia, Z. (2009). The concordance index C and the Mann–Whitney parameter Pr (X> Y) with randomly censored data. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 51(3), 467-474.
    Lagakos, S., & Mosteller, F. (1981). A case study of statistics in the regulatory process: the FD&C Red No. 40 experiment. Journal of the National Cancer Institute, 66(1), 197-212.
    Lo, S. M., & Wilke, R. A. (2010). A copula model for dependent competing risks. Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(2), 359-376.
    Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of mathematical statistics, 50-60.
    Moradian, H., Larocque, D., & Bellavance, F. (2019). Survival forests for data with dependent censoring. Statistical methods in medical research, 28(2), 445-461.
    Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, 234-235.
    Nelsen, R. B. (2006). An introduction to copulas: Springer Science & Business Media.
    Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1(1), 27-52.
    Rivest, L.-P., & Wells, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis, 79(1), 138-155.
    Staplin, N., Kimber, A., Collett, D., & Roderick, P. (2015). Dependent censoring in piecewise exponential survival models. Statistical methods in medical research, 24(3), 325-341.
    Sujica, A., & Van Keilegom, I. (2018). The copula-graphic estimator in censored nonparametric location-scale regression models. Econometrics and statistics, 7, 89-114.
    Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3): Cambridge university press.
    Zheng, M., & Klein, J. P. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika, 82(1), 127-138.

    QR CODE
    :::