跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭宇棋
Yu-Chi Cheng
論文名稱: 泛星計畫觀測之短週期彗星在遠距離彗髮活動之光度分析與軌道動力學研究
Photometric Analysis and Dynamic Study of Short Period Comets with Distant Coma Activities from Pan-STARRS 1 Survey
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 91
中文關鍵詞: 太陽系彗星巡天軌道模擬
外文關鍵詞: Solar system, Comet, Sky Survey, Orbital simulation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這份研究中,我研發了一個系統化的流程,用以處理巡天計畫(泛星計畫與帕洛馬巡天)所拍攝到的木族彗星影像。影像分析程式有三個主要功能:挖掘出有拍攝到彗星的觀測影像;辨認彗星是否有噴發活動;並且測量彗星的活躍程度。一般來說,彗星活動主要是由水冰的揮發作用所主導,在這裡我採用了水的雪線作為判斷標準,將所以分析過的木族彗星根據其特性分為四個類別:典型活動彗星,彗星活動只出現在雪線範圍內;非典型活動彗星,在雪線外仍可能發生彗星噴發活動;低度活躍彗星,在觀測影像中不曾出現過彗星活動;以及無法偵測到的彗星,彗星訊號不曾出現在預測的影像區域。

    我同時也使用Mercury軟體來分析木族彗星的動力學特徵。結合觀測資料與軌道數值模擬,由於彗星核心保存的揮發性物質是有限的,我們可以建立起彗星活動特性與動力學時間尺度兩者之間的關聯。論文中詳細的討論了造成彗星活動如此多變的可能原因。


    I developed a systematic method to analyze the snapshot images from sky survey projects such as the Pan-STARRS 1 (PS1) and Palomar Transient Factory (PTF) on all the numbered Jupiter Family Comets (JFCs). There are three objectives for my image processing pipeline to handling the five years survey data: to find out images that contains target of interest; to identify the signature of coma activity; and to measure the level of outgassing activity. Given that cometary activities are generally triggered by the sublimation of water ice, I introduce the water ice snowline at 3 au as an indicator for the comet classification. All comets analyzed in this work are classified into four groups based on its behaviors: regular active comets with coma activities within the snowline only, abnormal active comets with coma activities detected beyond the snowline, low active comets that are always inactive and appear as point-like sources, and undetectable comets.

    I also use the Mercury integrator to study dynamic features of JFCs by numerical methods. Combining the observational and numerical results, a connection between active behaviors and dynamics has been established: due to the limited amount of volatiles in the cometary nuclei, dynamic age roughly reflects the appearance of cometary activity. A detail discussion is given in this thesis for possible explanations of various cometary activities.

    1 Introduction........................................................ 1 1.1 The Nature of Comets.............................................................. 1 1.2 Dynamical classification and its origin ..................................... 2 1.3 Coma activity........................................................................... 4 1.4 The diversity of cometary activities ......................................... 6 2 Sky survey project.............................................. 8 2.1 Panoramic Survey Telescope and Rapid Response System 1 ... 8 2.1.1 Optical design and performances ............................... 8 2.1.2 Survey modes and constraints.................................... 10 2.1.3 Data flow, Image processing pipelines (IPP, MOPS, DVO), and Postage image server ............................... 10 2.2 Palomar Transient Factory....................................................... 11 2.2.1 Optical design and performances ............................... 11 2.2.2 The image processing and retrieving system.............. 12 3 Image analysis .................................................... 14 3.1 Algorithm to search for cometary activities ............................. 14 3.1.1 Modeling the PSF shape of image ............................. 14 3.1.2 Comparing the intensity profile ................................. 18 3.1.3 Criteria of the existing coma ..................................... 18 3.2 Afρ estimation on Jupiter Family Comets .............................. 20 3.2.1 The color of the Sun .................................................. 21 3.2.2 Integrating the brightness of the comet ..................... 22 iii3.3 Pipeline of the image analysis process...................................... 23 3.4 Quality control ......................................................................... 25 4 Activity History of Jupiter Family Comet ......... 27 4.1 Limitation of the sky survey dataset........................................ 27 4.2 Discovery of a recurrent comet in the JFC population: 289P/2003 WY25 ....................................................................................... 29 4.2.1 History of comet 289P/2003WY25 ............................ 29 4.2.2 Outburst event........................................................... 30 4.3 Classification of activity history ............................................... 31 4.3.1 Type I: regular activity.............................................. 31 4.3.2 Type II: abnormal activity......................................... 33 4.3.3 Type III: low activity................................................. 39 4.3.4 Type IV: no detection................................................ 45 4.3.5 The nature of cometary activity ................................ 49 4.4 Statistical results...................................................................... 51 4.4.1 Activity appearances and orbital parameter.............. 52 4.4.2 Asymmetry of pre/post perihelion activity................ 52 4.4.3 Possibility of distant activity in JFC population ....... 54 4.4.4 Distant activity and perihelion distance .................... 55 4.5 False detection and other systematic problems ........................ 55 5 Dynamical study................................................. 58 5.1 Orbital integrator and initial parameters ................................. 59 5.2 Orbital evolution history .......................................................... 59 5.3 Parameterize the orbital evolution history ............................... 60 5.3.1 Mean age in JFC population (Age JFC ) ..................... 60 5.3.2 Cumulative time within water ice snow line (Age 3au ) 61 5.3.3 Change of perihelion distance in the past 50 years (∆q|50yrs ).................................................................... 62 5.3.4 Maximum divergent time ........................................... 63 5.4 Result ....................................................................................... 63 5.4.1 The JFC age and its journey within the 3 au snow line ............................................................................. 63 5.4.2 The degree of outgassing activity .............................. 65 5.5 The quasi-Hilda Comets........................................................... 66 6 Summary and future work.................................. 69 6.1 Summary .................................................................................. 69 6.2 Future work.............................................................................. 71 6.2.1 Intensive study on some interesting targets ............... 71 6.2.2 Monitoring the cometary activity history .................. 71 Bibliography ............................................................ 73

    A’Hearn, M. F., Schleicher, D. G., Feldman, P. D., et al. 1984, AJ, 89, 579

    A’Hearn, M. F., Millis, R. L., Schleicher, D. G., et al. 1995, Icarus, 118, 223

    A’Hearn, M. F. 2008, SSR, 138, 237
    A’Hearn, M. F., Belton, M. J. S., Delamere, W. A. et al. 2011, Science, 332, 1396
    Ali-Lagoa, V., Delbo’, M., & Libourel, G. 2015, ApJL, 810, L22
    Bertin, E., & Arnouts, S. 1996, AAS, 117, 393
    Brasser, R., & Wang, J. H. 2015, AA, 573, A102
    Burgett, W. S. 2012, SPIE, 8449, 28
    Burke, B. E., Tonry, J. L., Cooper, M. J., et al. 2006, SPIE, 6068, 173
    Burke, D. J., Wolff, A. J., Edridge, J. L., et al. 2008, PCCP, 10, 4956
    Capaccioni, F., Coradini, A., Filacchione, G., et al. 2015, Science, 347, 0628
    Carusi, A., & Valsecchi, G. B. 1987, Proceeding of 10th European Regional Astronomy Meeting of the IAU, v2, 21
    Chambers, J. E. 1999, MNRAS, 304, 793
    Cheng, Y. C., & Ip, W. H. 2013, ApJ, 770, 97
    Chyba, C. F. 1987, Nature, 330, 632
    Davidsson, B. J.R., Gutierrez, P. J., Groussin, O., et al. 2013, Icarus, 224, 154
    Demeo, F., & Binzel, R. P. 2008, Icarus, 194, 436
    Denneau, L., Jedicke, R., Grav, T., et al. 2013, PASP, 125, 357
    De Sanctis, M. C., Lazzarin, M., Barucci, M. A., et al. 2000, AA, 354, 1086
    Duxbury, T. C., & Newburn, R. L. 2004, JGR, 109, E12S02
    Epifani, E. M., Palumbo, P., Capria, M. T., et al. 2007, MNRAS, 381, 713
    Epifani, E. M., Palumbo, P., Capria, M. T., et al. 2008, MNRAS, 390, 265
    Epifani, E. M., Palumbo, P., & Colangeli, L. 2009, AA, 508, 1031
    Farnham, T. L., & Schleicher, D. G. 2005, Icarus, 173, 533
    Feaga, L. M., A’Hearn, M. F., Sunshine, J. M., et al. 2007, Icarus, 190, 345
    Feldman, P. D., Cochran, A. L., & Combi, M. R. 2004, Comet II, 425, The University of Arizona Press
    Fernandez, J. A., & Gallardo, T. 1994, AA, 281, 911
    Fernandez, J. A., Tancredi, G., Rickman, H., et al. 1999, AA, 352, 327
    Fernandez, Y. R., Jewitt, D. C., & Sheppard, S. S. 2005, AJ, 130, 308
    Fernandez, Y. R., Kelley, M. S., Lamy, P. L., et al. 2013, Icarus, 226, 1138
    Ferrin, I. 2010, PSS, 58, 365
    Fink, U. 2009, Icarus, 201, 311
    Gilbert, A. M., & Wiegert, P. A. 2009, Icarus, 201, 714
    Groussin, O., Hahn, G., Lamy, P. L., et al. 2007, MNRAS, 276, 1399
    Groussin, O., Sunshine, J. M., Feaga, L. M., et al. 2013, Icarus, 222, 580
    Gulkis, S., Allen, M., Allmen, P. V., et al. 2015, Science, 347, 709
    Hassig, M., Altwegg, K., Balsiger, H., et al. 2015, Science, 347, 0276
    Houpis, L. F., Ip, W. H., & Mendis, D. A. 1985, ApJ, 295, 654
    Hsieh, H. H. 2009, AA, 505, 1297
    Hsieh, H. H., Denneau, L., Wainscoat, R. J., et al. 2015, Icarus, 248, 289
    Holmberg, J., Flynn, C. & Portinari, L. 2006, MNRAS, 367, 449
    Hudson, R. L., & Donn, B. 1991, Icarus, 94, 326
    Green, D. W. E. 2002, IAU circular, 7827
    Ip, W. H., & Fernandez, J. A. 1988, Icarus, 74, 47
    Jenniskens, P., & Lyytinen, E. 2005, AJ, 130, 1286
    Jewitt, D. 2006, AJ, 131, 2327
    Jewitt, D., Weaver, H., Agarwal, J., et al. 2010, Nature, 467, 819
    Jewitt, D., Weaver, H., Mutchler, M., et al. 2011, ApJ, 733, L4
    Kaiser, N., Burgett, W., Chambers, K., et al. 2010, SPIE, 7732, 14
    Keller, H. U., Arpigny, C., Barbieri, C., et al. 1986, Nature, 321, 320
    Kelley, M. S., Fernandez, Y. R., Licandro, J., et al. 2013, Icarus, 225, 475
    Knight, M. K., Walsh, K. J., A’Hearn, M. F., et al. 2007, Icarus, 191, 403
    Kresak 1979, Asteroid, 289, The University of Arizona Press
    Kulkarni, S. R. 2016, AAS Meeting, 227, 314.01
    Lacerda, P. 2013, MNRAS, 428, 1818
    Lamy, P. L., Toth, I., Jorda, L., et al. 1998, AA, 335, L25
    Lamy, P. L., Toth, I., Weaver, H. A., et al. 2009, AA, 508, 1045
    Lamy, P. L., Toth, I., Weaver, H. A., et al. 2011, MNRAS, 412, 1573
    Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395
    Levison, H. F., & Duncan, M. J. 1994, Icarus, 108, 18
    Levison, H. F., & Duncan, M. J. 1997, Icarus, 127, 13
    Licandro, J., Tancredi, G., Lindgren, M., et al. 2000, Icarus, 147, 161
    Lowry, S. C., Fitzsimmons, A., Cartwright, I. M., et al. 1999, AA, 349, 649
    Lowry, S. C., & Fitzsimmons, A. 2001, AA, 365, 204
    Lowry, S. C., Fitzsimmons, A., & Collander-Brown, S. 2003, AA, 397, 329
    Lowry, S. C., & Weissman, P. R. 2003, Icarus, 164, 492
    Lowry, S. C., & Fitzsimmons, A. 2005, MNRAS, 358, 641
    Magnier, E. 2006, in The Advanced Maui Optical and Space Surveillance Technologies Conference, ed. S. Ryan (Maui, HI: The Maui Economic Development Board), E50
    Magnier, E. A., Schlafly, E., Finkbeiner, D., et al. 2013, ApJS, 205, 20
    Maquet, L. 2015, AA, 579, A78
    Massironi, M., Simioni, E., Marzari, F., et al. 2015, Nature, 526, 402
    Meech, K. J., & Jewitt, D. C. 1987, AA, 187, 585
    Meech, K. J., & Svoren, J. 2004, Comet II, 317, The University of Arizona Press
    Meech, K. J., Hainaut, O. R., & Marsden, B. G. 2004, Icarus, 170, 463
    Meech, K. J., Pittichova, J., Bar-Nun, A., et al. 2009, Icarus, 201, 719
    Meech, K. J., Hainaut, O. R., Bauer, J. M., et al. 2012, DPS Meeting, 44, 510.04
    Muinonen, K. 1996, MNRAS, 280, 1235
    Mumma, M. J., Disanti, M. A., Magee-Sauer, K., et al. 2005, Science, 310, 270
    Oberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., et al. 2011, ApJ, 740, 109
    Ofek, E. O., Laher, R., Law, N., et al. 2012, PASP, 124, 62
    Ohtsuka, K., Ito, T., Yoshikawa, M., et al. 2008, AA, 489, 1355
    Oort, J. H. 1950, Bull. Astron. Inst. Netherlands, 11, 91
    Ootsubo, T., Kawakita, H., Hamada, S., et al. 2012, ApJ, 752, 15
    Paganini, L., Mumma, M. J., Bonev, B. P., et al. 2012, Icarus, 218, 644
    Pozuelos, F. J., Moreno, F., Aceituno, F., et al., AA, 568, A3
    Pozuelos, F. J., Moreno, F., Aceituno, F., et al., AA, 571, A64
    Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334
    Reach, W. T., Kelley, M. S., & Sykes, M. V. 2007, Icarus, 191, 298
    Reach, W. T., Kelley, M. S., & Vaubaillon, J. 2013, Icarus, 226, 777
    Rickman, H., Fernandez, J. A., & Gustafson, B. A. S. 1990, AA, 237, 524
    Schleicher, D. G., Barnes, K. L., & Baugh, N. F. 2006, AJ, 131, 1130
    Schulz, R., & Schwehm, G. 1996, PSS, 44, 619
    Snodgrass, C., Lowry, S. C., & Fitzsimmons, A. 2006, MNRAS, 373, 1590
    Snodgrass, C., Lowry, S. C., & Fitzsimmons, A. 2008, MNRAS, 385, 737
    Soderblom, L. A., Becker, T. L., Bennett, G., et al. 2002, Science, 296, 1087
    Stoer J., Bulirsch R., 1980, Introduction to Numerical Analysis. SpringerVerlag, New York
    Sunshine, J. M., Groussin, O., Schultz, P. H., et al. 2007, Icarus, 190, 284
    Szutowicz, S. 2000, AA, 363, 323
    Tancredi, G., Fernandez, J. A., Rickman, H., et al. 2000, AAS, 146, 73
    Tancredi, G., Fernandez, J. A., Rickman, H., et al. 2006, Icarus, 182, 527
    Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
    Toth, I. 2006, AA, 448, 1191
    Trigo-Rodriguez, J. M., Garcia-Melendo, E., Davidsson, B. J. R., et al. 2008, AA, 485, 599
    Vincent, J. B., Bodewits, D., Besse, S., et al. 2015, Nature, 523, 63
    Waszczak, A., Ofek, E. O., Aharonson, O., et al. 2013, MNRAS, 433, 3115
    Whipple, F. L. 1950, ApJ, 111, 375

    QR CODE
    :::