跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林倖妍
Hsing-Yen Lin
論文名稱: 感溫粉之光譜行為與溫度關聯性之研究
Study of Temperature Dependence on Reflection Spectrum of Thermochromatic Pigments
指導教授: 楊宗勳
Tsung-Hsun Yang
孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: 感溫粉光譜溫度
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對感溫粉溫感變色特性,詳細探討其反射率光譜與溫度之量化關係,並分析與歸納建立量化模型。藉由此量化模型,進一步嘗試將感溫粉應用於固態照明技術中,螢光粉溫度之即時偵測,並以二種不同感溫粉分別驗證其對溫度之偵測能力。


    In this thesis, the spectral analysis has been applied on the thermochromatic pigments. In order to get the information of temperature and reflection spectrum, the experimental set up has been established including spectral measurement, temperature controlling, and temperature recoding. At the same time, a quantitative model is established by analyzing the reflection spectra of the thermochromatic pigments. As a result, a novel temperature sensing procedure in phosphor can be further developed with the verification on two different thermochromatic pigments.

    摘要 II Abstract III 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 7 1.3 論文大綱 9 第二章 基本理論 10 2.1 感溫粉之變溫機制與特性 10 2.2 螢光粉的發光原理 13 2.2.1 螢光粉的能階結構 15 2.2.2 螢光粉受熱之影響 17 第三章 感溫粉之實驗備製與模型建立 20 3.1 感溫粉片之備製 20 3.2 感溫粉片頻譜變異量測之架構建立 23 3.2.1 感溫粉片量測實驗架構之建立 23 3.2.2 熱電偶 24 3.2.3 感溫粉片量測實驗架構之溫差分析 25 3.2.4 感溫粉片頻譜量測實驗架構之分析 33 3.3 感溫粉之模型建立 36 第四章 感溫粉模型應用分析與驗證 41 4.1 感溫粉混入螢光粉之溫度偵測 41 4.2 感溫粉混入螢光粉之溫度判定 45 4.3 感溫粉溫度偵測之驗證與分析 54 4.3.1 B55 感溫粉溫度偵測之驗證與分析 55 4.3.2 R65 感溫粉溫度偵測之驗證與分析 57 第五章 結論 67 參考文獻 69 中英名詞對照表 77

    [1] J. MOSS, “Pleasure and Illusion in Plato,”Philosophy and Phenomenological Research 72, 503–535 (2006)
    [2] The Philosophy Resource Website -Two questions for interpreters http://www.thephilosophyresource.co.uk/the-interpretation/
    [3] 陳炳亨,自然與生活科技教學專刊,翰林出版社,台南市,中華民國九十八年二月。
    [4] http://www.eoht.info/page/Thermometer
    [5] H.C. Bolton, Evolution of the thermometer, The Chemical Publishing Co., Easton, 1990.
    [6] 國家度量衡標準實驗室官網,"溫度的單位":克耳文(K),http://goo.gl/cwynDH
    [7] B. W. Mangum; G T. Furukawa; Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90), Gaithersburg, 1990.
    [8] 上海雙旭電子技術文件,"雙金屬溫度計的原理和使用方法詳細介紹",http://goo.gl/ntJKkT
    [9] 伍秀菁、汪若文、林美吟,儀器總覽-基本物理量量測儀器,行政院國家科學委員會精密儀器發展中心,新竹市,中華民國八十七年。
    [10] P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Review of scientific instruments 71, 2959 (2000).
    [11] M. Duff, and J. Towey, “Two Ways to Measure Temperature Using Thermocouples Feature Simplicity, Accuracy and Flexibility,” Analog Dialogue 44, 3-8 (2010).
    [12] R. P. Benedict, Manual on the Use of Thermocouples in Temperature Measurement, United States, 1962.
    [13] J. L. Riddle, G. T. Furukawa,and H. H. Plumb, Platinum resistance thermometry, Institute for Basic Standards, United States, 1973
    [14] H. J. Kostkowski and R. D. Lee, Theory and Methods of Optical Pyromtery, United States, 1962.
    [15] 伍秀菁、汪若文、林美吟,儀器總覽-光學量測儀器,行政院國家科學委員會精密儀器發展中心,新竹市,中華民國八十七年。
    [16] Avio Company, "TVS-500EX", http://www.infrared.avio.co.jp/en/products/ir-thermo/lineup/tvs-500ex/
    [17] G. Gaussorgues, Infrared Thermography, France,1994.
    [18] 楊仲準,"電子儀器與量測技術之溫度量測",http://140.135.72.1/~MSLab/Slides/電子儀器與量測技術_Ch1.pdf
    [19] V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater. 21, 2077-2084 (2009).
    [20] L. Robertson, Etude de pigments thermochromes autour du cobalt II, France, 2010.
    [21] N. Thomas, “Reversible thermochromic pigments,” U.S. Patent 5,480,482(1996).
    [22] 崇裕科技,"感溫變色材料",http://www.colorchange.com.tw/index.php/tw/thermochromic-material.html
    [23] Wikicliki website, "Thermochromism",http://wwgou.org/wikicliki/index.php?title=Thermochromism
    [24] K. Senga, and M. Ito, “Thermochromic pigment material which has a microcapsular form having non-round particle cross section and has a thermochromic material enclosed in the microcapsules,” U.S. Patent 6,669,765 (2003).
    [25] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
    [26] J.Gracia, L. Seijo, Z. Barandiarán, D. Curulla, H. Niemansverdriet, and W. van Gennip, “Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of Ce3+-doped YAG,” J. Lumines. 128, 1248-1254 (2008).
    [27] G. Blasse and A. Bril, “A New Phosphor for Flyting-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce3+,” Appl. Phys. Lett. 11, 53-55 (1967).
    [28] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
    [29] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
    [30] D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
    [31] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors I. Intensity and Lifetime Measurements on Undoped and Ce‐Doped Y3Al5O12,” J. Electrochem. Soc. 126, 1213-1220 (1979).
    [32] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors II. A Comparative Study of Ce3+, Eu3+, Tb3+, and Gd3+ in Y3Al5O12,” J. Electrochem. Soc. 126, 1221-1228 (1979).
    [33] M. Batentschuk, B. Schmitt, J. Schneider, and A. Winnacker, “Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds),” Proc. MRS 560, 215 (1999).
    [34] M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” M. J. Phy. Sci. 4, 347-356 (2005)
    [35] G. Blasse and A. Bril , J. Chem. Phys 47,5139 (1967)
    [36] K. Jang, “Excitation-Dependent Emissive Properties of Silicate Phosphor for Light Converted LEDs,” J. Korean Phys. Soc. 55, 1587 (2009).
    [37] L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials 3, 2172-2195 (2010).
    [38] J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+,” J. Phys. Chem. A 116, 8464-8474 (2012).
    [39] D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
    [40] K. Ivanovskikh, J. Ogiegło, A. Zych, C. Ronda, and A. Meijerink, “Luminescence Temperature Quenching for Ce3+ and Pr3+ df Emission in YAG and LuAG,” ECS Journal of Solid State Science and Technology 2, R3148-R3152 (2013).
    [41] 劉瑋瑋,白光LED 之螢光粉熱衰探討,國立中央大學光電科學研究所碩士論文,中華民國一百年。
    [42] G. Blasse and A. Bril, “A New Phosphor for Flyting-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce3+,” Appl. Phys. Lett. 11, 53-55 (1967).
    [43] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
    [44] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
    [45] J. G. Solé, L. E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, Universidad Autónoma de Madrid, Madrid, Spain (2005).
    [46] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mate. Sci. Engineering R 71, 1-34 (2010).
    [47] Y. ZHANG, Lan Li, X. ZHANG, Q. Xi, “Temperature effects on photoluminescence of YAG: Ce3+ phosphor and performance in white light-emitting diodes,” J. Rare Earths 26, 446-449 (2008).
    [48] J. L. Qin, C. F. Hu, B. F. Lei, J. F. Li, Y. L. Liu, S. P. Ye, and M. Z. Pan, “Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior,”J. Mater. Sci. Technol. 30,290-294 (2014)
    [49] P. Vitta; P. Pobedinskas, A. Zukauskas, “Phosphor Thermometry in White Light-Emitting Diodes,” IEEE Photonics Technology Letters 19,399-401 (2007)
    [50] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, “Temperature-dependent emission spectra of M2SiO4: Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs,” Science 133, 455-448 (2005).
    [51] A. K. Lunia, S. K. Patra, S. Kumar, S. Singh, S. Pal, and C. Dhanavantri, “Theoretical analysis of blue to white down conversion for light-emitting diode light with yttrium aluminum garnet phosphor,” SPIE Journal of Photonics for Energy 4, 043596-1-11 (2014).
    [52] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physics 34, 149-154 (1967).

    [53] A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumines. 129, 1356-1361 (2009).
    [54] J. Qin, C. Hu, B. Lei, J. Li, Y. Liu, S. Ye, M. Pan,” Temperature-Dependent Luminescence Characteristic of SrSi2O2N2Eu2+ Phosphor and Its Thermal Quenching Behavior,”J. Matter. Sci. Technol. 30, 290-294(2014).
    [55] Y. P. Varshni, Physica 34, 149-154 (1967).
    [56] R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Matter. Sci. 45,146-150 (2009)
    [57] Z. He, Z. Li, X. Fan, W. Cheng, J. Ju, Q. Ou, R. Liang, “Photoluminescence enhancement and thermal performance of surface modified Y3Al5O12:Ce3+ phosphor by chemical wet etching,” Function Materials Lett. 6,1350008-1 (2013).
    [58] C. C. Chiang, M. S. Tsai, M. H. Hon, “Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects,” J. Elec. Soc. 155, B517-B520 (2008).
    [59] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書股份有限公司,台北縣,中華民國九十七年。
    [60] C. C. Lin and R. S. Liu, “Advances in Phosphors for Light-emitting Diodes,” J. Phys. Chem. Lett. 2, 1268–1277 (2011).

    [61] A. W. van Herwaarden and P. M. Sarro, “Thermal sensors based on the Seebeck effect,” Sens. Actuators A 10, 321–346 (1986).
    [62] T. J. Seebeck, Magnetiche polarisation der metalle und erze durch temperatur-differenz, Abh. Kön. Akad. Wiss. , 265-373 (1822).
    [63] A. W. Van Herwaarden and P. M. Sarro, “Thermal sensors based on the seebeck effect,” Sensors and Actuators 10, 321- 346 (1986).

    QR CODE
    :::