跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳揚仁
Yang-Zen Chen
論文名稱: 演算法LLL與白化濾波應用於導航衛星相位模稜搜尋
Searching the Ambiguity of Navigation Satellite Carrier-phase Using the LLL Algorithm and the Whitening Filter
指導教授: 吳究
Joz Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 64
中文關鍵詞: 相位模稜高相關
外文關鍵詞: higher correlation, Carrier-phase
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言,GNSS載波相位定位之精度較電碼定位高,利用載波相位觀測量進行衛星測量求解位置時,如何快速得到正確的整數相位模稜值,是求解精度與效率的關鍵。但是參數間彼此高相關,會使這個目標變得困難。這個問題能夠藉由衛星幾何的改變來改善,但是卻因此而加長觀測時間。因此LLL技術以及白化濾波即將原在高相關空間的參數,投影至另一低相關空間。使數學變換過程等效於衛星幾何改變,進而可在較短觀測時段裡求解。
    LLL是將一正定對稱矩陣分解為上下三角矩陣,再利用Gram–Schmidt正交變換將三角矩陣之向量轉變為彼此間皆正交,接著藉由正交化後之上下三角矩陣相乘得到一具備對角優勢之協方差矩陣。
    白化濾波是利用Crout 因子分解,使一正定對稱矩陣分解為對角線矩陣與單位上下三角矩陣之連乘。應用其矩陣對角線化的特性於相位模稜實數解的協方差矩陣上,產生具備對角優勢之協方差矩陣。
    應用此協方差矩陣可大幅減少整數相位模稜的候選解。最後將候選解逐一代入觀測式中重新進行平差演算,求取一殘差二次形為最小之解。


    Generally, the GNSS carrier-phase is more accurate then the pseudorange. While using carrier-phase for positioning, the key point is how to obtain the correct integer ambiguity quickly and efficiently. However the high correlation between parameters makes it to be difficult. The problem can be improved by the changing of the geometric of satellites. But it needs longer observation time to reach. Therefore the LLL algorithm and the whitening filter are techniques mapping the parameters from a higher correlation space to a lower correlation space. And the effects of mathematics changing and the geometric changing can be the same. Then the result can be gotten within a short observation period.
    The LLL algorithm decomposes a positive-definite symmetrical matrix into the upper/lower triangular matrix. Then uses the Gram–Schmidt orthogonalization to transform vectors of the matrix into orthogonal each other. Then the diagonal covariance matrix can be gotten by the transpose of the orthogonal matrix multiplying to the orthogonal matrix.
    Whitening filter uses crout factorization to decompose a positive-definite symmetrical matrix into the continue multiplication of diagonal matrix and unit upper/lower triangular matrix. Applying the specifics of its diagonal matrix condition to covariance matrix can get the diagonal covariance matrix.
    Using the diagonal covariance matrix can reduce the number of candidates for integral ambiguity. Final, the candidates are inserted into the observation equations to determine the solution again. It is believed that the integer candidate which produces the smallest sum of squares of the residual is the most likely solution we want.

    目錄 I 圖目錄 III 表目錄 V 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 5 1.3 論文架構 6 第二章 理論基礎 7 2.1 觀測方程式 7 2.1.1 虛擬距離觀測方程式 7 2.1.2 載波相位觀測方程式 9 2.2 差分模式 10 2.3 費雪統計檢定 12 第三章 LLL、白化濾波與相位模稜搜尋 13 3.1 平差模式 13 3.2 觀測資料之隨機模式 14 3.3 協方差、搜索域與轉換矩陣 15 3.4 矩陣分解 19 3.4.1 Crout因子分解 19 3.4.2 Cholesky矩陣分解 21 3.5 LLL理論與相位模稜搜尋 22 3.6 白化濾波理論與相位模稜搜尋 28 第四章 實驗成果與分析 31 4.1 實驗資料背景 31 4.2 實驗處理流程 32 4.3 實驗成果與分析 33 4.3.1 基線SPP0–MUST (21.3 km) 35 4.3.2 基線SPP0–XINU (24.6 km) 37 4.3.3 基線SPP0–NTPU (37.2 km) 40 4.3.4 基線SPP0–SINP (39.0 km) 42 4.3.5 基線SPP0–PCCU (40.1 km) 45 4.3.6 基線SPP0–LANY (64.6 km) 47 4.3.7 基線SPP0–CKGM (239.3 km) 50 4.3.8 基線SPP0–CKGM OTF解算使用時刻分析 53 4.3.9 空載資料之成果 55 第五章 結論與展望 58 5.1 結論 58 5.2 展望 59 參考文獻 61

    林修國,1997。相位模稜求定與時鐘偏差估計應用與衛星相對定位姿態求解,博士論文,國立中央大學大氣物理研究所,中壢。
    徐浩雄,2000。白化濾波應用於GPS動態衛星定位測量之研究,碩士論文,國立中央大學土木工程研究所,中壢。
    張毓偉,1999。GPS多主站中距離單一時刻即時動態定位,碩士論文,國立成功大學測量工程研究所,台南。
    黃昭銘,2001。消去GPS 相位模稜OTF 相對定位之研究,碩士論文,國立中央大學土木工程研究所,中壢。
    游豐吉,1999。應用GPS 載波相位餘弦模式於衛星測量之研究,博士論文,國立中央大學土木工程研究所,中壢。
    葉添福,2003。最小二乘過濾法應用於動態GPS衛星定位平穩性之研究,碩士論文,國立中央大學土木工程研究所,中壢。
    謝吉修,2003。GPS 即時動態定位最佳化演算法比較研究,碩士論文,國立中央大學土木工程研究所,中壢。
    Beran, T., R. B. Langley, S. B. Bisnath, and L. Serrano, 2007. High-accuracy point positioning with low-cost GPS receivers, Navigation, Vol. 54, No. 1, pp.53–63.
    Chen, D. and G. Lachapelle, 1995. A comparison of the FASF and least-squares search algorithms for on-the-Fly ambiguity resolution, Navigation, Vol. 42, No. 2, pp. 371–390.
    Counselman, C. C., III and S. A., Gourevitch, 1981. Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system, IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-19, No. 4, pp. 244–252.
    Dong, D. and Y. Bock, 1989. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in california, Journal of Geophysical Research, Vol. 94, No. B4, pp. 3949–3966 .
    Fern?ndez-Plazaola, U., T.M. Mart?n-Guerrero, and J.T. Entrambasaguas, 2008. A new method for three-carrier GNSS ambiguity resolution, Journal of Geodesy, Vol. 82, No. 4–5, pp. 269–278.
    Frei, E. and G. Beutler, 1990. Rapid static positioning based on the fast ambiguity resolution approach ‘FARA’: theory and first results, Manuscripta Geodaetica, Vol. 15, No. 6, pp. 325–356.
    Golub, G.H., C.F. van Loan, 1989. Matrix computations, 2nd edn., Johns Hopkins University Press, Baltimore.
    Grafarend, E. W., 2000. Mixed integer-real valued adjustment (IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm, GPS Solutions, Vol. 4, No. 2, pp. 31–44.
    Hassibi, A. and S. Boyd, 1998. Integer parameter estimation in linear models with GPS applications, IEEE Transactions on Signal Processing, Vol.46, No. 11, pp.2938–2952.
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, 1997. Global positioning system theory and practice, 4th edn., Springer, New York.
    Horemuž, M. and L. E. Sj?berg, 2002. Rapid GPS ambiguity resolution forshort and long baselines, Journal of Geodesy, Vol. 76, No. 6–7, pp. 381–91.
    Joosten, P. and C. Tiberius, 2000. Fixing the ambiguities, are you sure they’re right?, GPS World, Vol. 11, No.5, pp.46–51.
    Leick, A., 2004. GPS satellite surveying, 3rd edn., John Wiley & Sons, Inc., Hoboken.
    Lenstra, A.K., H.W. Lenstra, and L. Lov?sz, 1982. Factoring polynomials with rational coefficients, Mathematische Annalen, Vol. 261, pp. 515–534.
    Liu, L. T., H. T. Hsu, Y. Z. Zhu and J. K. Ou, 1999. A new approach to GPS ambiguity decorrelation, Journal of Geodey, Vol. 73, No. 9, pp. 478–490.
    Mohamed, A. H. and K. P. Schwarz, 1998. A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter, Navigation, Vol. 45, No. 3, pp. 221–231.
    Remondi, B. W., 1991. Pseudo-kinematic GPS results using the ambiguity function method, Navigation, Vol. 38, No. 1, pp. 17–36.
    Teunissen, P. J. G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, Vol. 70, No. 1–2, pp. 65–82.
    Teunissen, P. J. G., P. J. de Jonge, and C. C. J. M. Tiberius, 1997. Performance of the LAMBDA method for fast GPS ambiguity resolution, Navigation ,Vol. 44, No. 3, pp. 373–383.
    Wang, J., M. P. Stewart, and M. Tsakiri, 1998. A discrimination test procedure for ambiguity resolution on-the-fly, Journal of Geodesy, Vol. 72, No. 11, pp. 644–653.
    Wells, D., N. Beck, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. M. Tranquilla and P. Vanicek, 1986. Guide to GPS positioning, Canadian GPS Associates, Fredericton.
    Wu, J. and C. H. Hsieh, 2008. GPS on-the-fly medium-length positioning by an estimation of the measurement variance, Journal of the Chinese Institute of Engineers, Vol. 31, No. 3, 459–468.
    Xu, P., 2001. Random simulation and GPS decorrelation, Journal of Geodesy, Vol. 75, No. 7–8, 408–423.

    QR CODE
    :::