| 研究生: |
林士耀 Shi-yao Lin |
|---|---|
| 論文名稱: |
應用單晶片之無轉軸感測器切換式磁阻馬達驅動系統 Development of sensorless switched reluctance motor drive system using microcontroller |
| 指導教授: | 林法正 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 切換式磁阻馬達 、無轉軸偵測元件之轉軸角度估測 、單晶片 |
| 外文關鍵詞: | switched reluctance motor, sensorless, microcontroller |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文的研究目的是以低價的32位元馬達控制單晶片為核心,開發一無轉軸位置感測之切換式磁阻馬達驅動系統。首先,針對切換式磁阻馬達的原理、結構及數學模型進行介紹,接著再介紹磁阻馬達與驅動系統的設計,然後針對兩種無轉軸感測元件下的系統驅動之方法進行討論,最後再以模擬及實驗驗證。本論文所使用的方法一為磁通鏈角度估測法,藉由量測激磁相的電壓及電流,進而估算激磁相磁通鏈,並用查表法估測角度,來完成在無轉軸偵測元件下之切換式磁阻馬達速度閉迴路控制;而方法二則是採用電流斜率角度估測法,首先量測激磁相的電流,接著算出電流斜率且配合功率轉換器的操作模式得出自感值,利用查表法來進行角度估測,完成在無轉軸感測元件下切換式磁阻馬達速度閉迴路控制。本論文最後利用世紀民生科技所生產的單晶片CS6257實現該驅動系統,並能在測試平台上初步的實測及驗證其功能。
Abstract
The objective of thesis is to develop a sensorless switched reluctance motor (SRM) drive system with a low cost microcontroller. First, the principle, structure and mathematical model of the switched reluctance motor are introduced. Next, the designs of switched reluctance motor and drive system are discussed. Moreover, two sensorless methods of drive system are derived. At last, it is attested by simulation and experiment. The first method calculates the value of flux-linkage from the measurement of voltage and current. Consequently, the estimated rotor angle can be obtained by using a look-up table. Then, the closed-loop speed control of the switched reluctance motor can be accomplished. The other method estimates the self-inductance of windings by detecting the time derivative of the stator current with the assistance operating states of converter, and the estimated rotor angle can also be obtained by using a look-up table. The speed control can be achieved the same as the first method. In addition, a microcontroller CS6257, manufactured by Myson Century, Inc. is adopted to develop the proposed switched reluctance motor drive system. Finally, some experimental results are given to verify the feasibility of the proposed sensorless control system.
參考文獻
[1] K. Kiyota, H. Sugimoto, and A. Chiba, “Comparing electric motors comparing electric motors: an analysis using four standard driving schedules,” IEEE Ind. Appl. Mag., vol. 20, no. 4, pp. 12–20, Apr. 2014.
[2] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. 34th IAS Annu. Meeting Conf. Rec. Ind. Appl. Conf., vol. 2, pp. 840-845, 1999.
[3] A. A. kumar, G. R. Bindu, and D Gopinath, “Performance analysis of single phase induction motor and switched reluctance motor used in domestic appliances with a view of energy conservation,” in Proc. IEEE Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–6, 2014.
[4] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, “Overview of electric motor technologies used for more electric aircraft (MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3523-3531, 2012.
[5] K. Kiyota, and Akira Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[6] T. J. E. Miller, A. Hutton, C. Cossar, and David A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp. 741-749, 1991.
[7] G. C. Lee and T. U. Lung, “Design comparisons of BLDC motors for electric water pump,” in Proc. IEEE Conf. Vehicle Power and Propulsion Conference (VPPC), pp. 48-50, 2012.
[8] REEL SuPremER-the most efficient magnet-free drive system, KSB Group.
[9] Synchronous reluctance motor-drive package for machine builders-High performance for ultimate machine design, ABB Group.
[10] A. Boglietti, A. M. El-Refaie, O. Drubel, A. M. Omekanda, N. Bianchi, E. B. Agamloh, M. Popescu, A. D Gerlando, and J. B. Bartolo, “Electrical machine topologies,” IEEE Ind. Electron. Mag., vol. 8, no. 2, pp. 18–30, 2014.
[11] A. M. Omekanda, “Switched reluctance machines for EV and HEV propulsion:state-of-the-art,” in Proc. IEEE Conf. Electrical Machines Design Control and Diagnosis (WEMDCD), pp. 70-74., 2013.
[12] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237-2245, 2008.
[13] R. Gobbi, N. C. Sahoo, and R. Vejian, “Experimental investigations on computer-based methods for determination of static electromagnetic characteristics of switched reluctance motors,” IEEE Trans. Instrum. Meas., vol. 57, no. 10, pp. 2196-2211, 2008.
[14] H. Sahraoui, H. Zeroug, and H. A. Toliyat, “Switched reluctance motor design using neural-network method with static finite-element simulation,” IEEE Trans. Magn., vol. 43, no. 12, pp. 4089-4095, 2007.
[15] J. Li, X. Song, and Y. Cho, “Comparison of 12/8 and 6/4 switched reluctance motor: noise and vibration aspects,” IEEE Trans. Mag., vol. 44, no. 11, pp. 4131-4134, 2008.
[16] J. Li and Y. Cho, “Investigation into reduction of vibration and acoustic noise in switched reluctance motors in radial force excitation and frame transfer function aspects,” IEEE Trans. Mag., vol. 45, no. 10, pp. 4664-4667, 2009.
[17] M. Farshad, J. Faiz, and Caro Lucas “Development of analytical models of switched reluctance motor in two-phase excitation mode: extended miller model,” IEEE Trans. Mag., vol. 41, no. 6, pp. 2145-2155, 2005.
[18] M. Ruba, I.-A. Viorel, L. Szabó, “Modular stator switched reluctance motor for fault tolerant drive systems,” IET Trans. Elect. Power Appl., pp. 159–169, 2013.
[19] H. Chen, H. H. Iu, and Y. Zhao, “Economic integration based solution for EMI noise in switched reluctance motor drive,” IEEE Trans. Magn., vol. 48, no. 2, pp. 859-852, 2012.
[20] J. Faiz, B. Ganji, C. E. Carstensen, K. A. Kasper, and R. W. D. Doncker, “Temperature rise analysis of switched reluctance motors due to electromagnetic losses,” IEEE Trans. Magn., vol. 45, no. 7, pp. 2927-2934, 2002.
[21] X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2076-2090, 2009.
[22] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, 2015.
[23] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, 2015.
[24] W. Shang, S. Zhao, Y. Shen, and Z. Qi, “A sliding mode flux-linkage controller with integral compensation for switched reluctance motor,” IEEE Trans. Magn., vol. 45, no. 9, pp. 3322-3328, 2009.
[25] I. Kioskeridis, and C. Mademlis, “Maximum efficiency in single-pulse controlled switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 809-817, 2005.
[26] C. L. Tseng, S. Y. Wang, S. C. Chien, and C. Y. Chang, “Development of a self-tuning TSK-fuzzy speed control strategy for switched reluctance motor,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2141-2152, 2012.
[27] A. Lumsdaine and J. H. Lang “State observers for variable-reluctance motors,” IEEE Trans. Ind. Electron., vol. 37, no. 2, pp. 133-142, 1990.
[28] J. Zhan, C. C. Chan, and K. T. Chau, “A novel sliding-mode observer for indirect position sensing of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no.2 , pp. 390-397, 1999.
[29] R. A. McCann, M. S. Islam, and I. Husain, “Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 51-58, 2001.
[30] M. S. Islam, I. Husain, R. J. Veillette, and Celal Batur, “Design and performance analysis of sliding-mode observers for sensorless operation of switched reluctance motors,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 3, pp. 383-389, 2003.
[31] P. P. Acarnley, R. J. Hill,, and C. W. Hooper, “Detection of rotor position in stepping and switched motors by monitoring of current waveforms,” IEEE Trans. Ind. Electron., vol. IE-32, no. 3, pp. 2145-222, 1985.
[32] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
[33] T. Wakasa, H. J. Guo, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON’02, Sevilla, Spain, pp. 502-507, 2002.
[34] M. Ehsani, I. Husain, and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 128-135, 1992.
[35] M. Ehsani , I. Husain, S. Mahajan, and K. R. Ramani, “New modulation encoding techniques for Indirect rotor position sensing in switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 30, no. 1, pp. 85-91, 1994.
[36] M. Ehsani and K. R. Ramini, “Direct control strategies based on sensing inductance in switched reluctance motors,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 74-82, 1996.
[37] W. D. Harris and J. H. Lang, “A simple motion estimator for variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 237-243, 1990.
[38] I. Husain and M. Ehsani, “Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 665-672, 1994.
[39] B. Y. Ma, T. H. Liu, C. G. Chen, and W. S. Feng, “Design and implementation of a sensorless switched reluctance drive system,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1193-1207, 1998.
[40] A. D. Cheok, and Z. Wang, “Fuzzy logic rotor position estimation based switched reluctance motor DSP drive with accuracy enhancement,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 908-921, 2005.
[41] W. Wang and B. Fahimi, “Fault resilient strategies for position sensorless methods of switched reluctance motors under single and multiphase fault,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 190-200, 2014.
[42] J. Ye, B. Bilgin and A. Emadi, “Elimination of mutual flux effect on rotor position estimation of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1499-1512, 2015.
[43] B. K. Bose, “Modern Power Electronics and AC Drives,”
[44] K. J. Tseng, S. Cao, and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
[45] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified c-dump converter for variable-reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[46] M. Ehsani, I. Husain, K. R. Ramini, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 224-230, 1993.
[47] H. Le-Huy, P. Viarouge, and B. Francoeur, ”A novel unipolar converter for switched reluctance motor,” IEEE Trans. Power Electron., vol. 5, no. 4, pp. 469-475, 1990.
[48] M. Barnes and C.Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100- 1111, 1998.
[49] S. Mir, I Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[50] S. Vukosavic and R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[51] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda, and N. N. Fulton, “Variable-speed switched reluctance motors,” IEE Proc.-Electr. Power Appl., vol. 127, no. 4, pp. 253-265, 1980.
[52] MYSON,CS6257 datasheet.
[53] Texas Instruments, TMS320F2801 datasheet.
[54] STMicroelectronics, STGW20V60DF datasheet.
[55] Sirectifier Electronics Technology Corporation, MUR3060 Datasheet.
[56] 陳慶國,開關式磁阻電動機驅動系統之非線性控制器設計及轉軸角度估測的研究,博士論文,台灣科技大學電機工程研究所,民國93年。
[57] A. D. Cheok and N. Ertugrul, “Computer-based automated test measurement system for determining magnetization characteristics of switched reluctance motors,” IEEE Trans. Instrum. Meas., vol. 50, no. 3, pp. 690-696, 2001.