跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴慧文
Hui-wen Lai
論文名稱: 應用系集方法與衛星資料改善台灣地區颱風降水潛勢
Applying Ensemble Forecast Technique to Improve Typhoon Rainfall Potential with Satellite Data over Taiwan
指導教授: 劉振榮
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 100
中文關鍵詞: I-TRaP颱風熱帶氣旋降雨潛勢系集方法
外文關鍵詞: Ensemble technique
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由Kidder et al. (2005) 提出之TRaP 方法,將衛星反演之降雨分佈平移,可迅速估算熱帶氣旋未來24小時內可能帶來的累積降雨,然而實際應用上TRaP並不適用於地形較複雜的台灣。Liu et al. (2011) 修正TRaP方法,納入地形因素,並根據測站降雨資料重新分配颱風所帶來之降雨量,以改善TRaP 方法,此法稱為I-TRaP。
    前人研究發現颱風強度隨時間的改變、預報路徑的誤差程度和衛星反演雨量的準確性皆會造成I-TRaP預報的誤差。為納入這些不確定性因素,期望藉由多個系集成員預報,以彌補單一成員預報的不足。本研究使用多衛星反演降雨產品GSMaP進行I-TRaP颱風降雨潛勢預報(本文中稱為Ensemble I-TRaP),選用GSMaP原因在於其高時間解析度特性可以提供多筆降雨資料。另外,為考慮颱風降雨型態距颱風中心的遠近而有不同,因此將其分為「內圈」環流雨和「外圈」地形雨,本研究另建立一組降雨預報模式(稱為Ensemble I-TRaP B),先分別估算兩形態的降雨再依權重結合,最後再比較此兩種方法與I-TRaP的24小時累積降雨預報結果,另外本研究也探討此模式於短時間(6、12、18小時)和長時間(24、36、48小時)累積降雨的預報能力。
    使用Ensemble I-TRaP和Ensemble I-TRaP B估算2001-2012年間77個颱風個案之24小時累積降雨,再和測站觀測資料比較,此兩種系集模式都可將相關係數由0.53提升至0.62,均方根誤差由81.68 mm分別降低至64.05 mm和63.76 mm,減少24%的均方根誤差,改善程度顯著。而在不同預報時間的降雨趨勢方面,此方法對於短時間的降雨較難掌握,但在長時間的累積降雨則有較好的表現。兩種方法的整體統計結果顯示加入系集成員可以提升I-TRaP預報能力,且加入降雨型態可再提升其定量降雨的精準度。


    Weather satellite observations are used widely for the quantitative precipitation forecast (QPF) of typhoon rainfall because they can provide relevant atmospheric parameters over both the ocean and land. Microwave observations by satellites have become the main data in forecasting tropical rainfall potential (TRaP) in a 24-h period (Kidder et al., 2005). The improved Tropical Rainfall Potential (I-TRaP) technique presented by Liu et al. in 2011 is a useful method for typhoon quantitative precipitation estimation and a powerful tool for rain-band monitoring before the typhoon makes landfall in Taiwan.
    However, the method only provides single prediction which may pose a difficulty when using single sensor or time segment data. To smooth the random error made by single forecast and quantify the uncertainties in prediction, this study seeks to adopt ensemble forecasts to help to provide more reliable predictions. In other words, the goal of this study is to construct a new ensemble I-TRaP technique for typhoon rainfall potential. Besides that, to consider about different rainfall types within a typhoon, the rain-band of a typhoon is separated into two parts: inner rain-band (circulation affected rainfall) and outer rain-band (terrain affected rainfall). This study again constructed another ensemble potential model called the Ensemble I-TRaP B model (“B” stands for “bi-types”), to consider the two rainfall types. Then, the results including that the performances of both ensemble methods in 24-h QPE and the ability of forecasts for different time periods are investigated.
    There are 77 typhoons from 2001 to 2012 used for long term statistics. Comparing to the I-TRaP model, the ensemble technique (i.e. Ensemble I-TRaP model), and the new model which additionally considering the two rainfall types (i.e. Ensemble I-TRaP B models) can both promote the correlation coefficient from 0.53 to 0.62, and decrease root-mean-square from 81.68 mm to 64.05 mm and to 63.76 mm respectively. It shows that this ensemble technique is useful for improving the rainfall pattern estimation in short accumulated periods, and moreover, it did better forecasting in long periods with a higher correlation coefficient. The results suggest that using the ensemble technique may improve I-TRaP, and considering rainfall types can again promote the rainfall amount prediction.

    摘要 i Abstract iii 誌謝 v Outline vi List of Tables ix List of Figures xi CHAPTER 1 INTRODUCTION 1 1.1 Study Background 1 1.2 Literature Review 2 1.3 Study Purpose 3 CHAPTER 2 DESCRIPTION OF THE DATASETS 6 2.1 SSM/I and SSMIS Microwave Data 6 2.2 Global Satellite Mapping of Precipitation (GSMaP) 7 2.3 Central Weather Bureau Gauge Data 8 2.4 JTWC Best Track 10 2.5 QuikSCAT 10 2.6 Synoptic weather map 11 CHAPTER 3 METHODOLOGY 12 3.1 Rainfall Retrieved Method 12 3.2 Tropical Rainfall Potential (TRaP) 13 3.3 Improve Tropical Rainfall Potential (I-TRaP) 13 3.3.1 Considering rain-band rotation to estimate rainfall rate 13 3.3.2 Terrain effect correction 14 3.3.3 Rainfall amount correction 15 3.4 Ensemble I-TRaP 15 3.4.1 Data selection depend on time 16 3.4.2 Method of weighting calculation 16 3.5 Ensemble I-TRaP with Separating Inner and Outer Rain Band 17 3.5.1 Data selection depend on different rainfall type of typhoons 17 3.5.2 Method of weighting calculation 18 3.6 Verification Method 18 3.6.1 Correlation coefficient 19 3.6.2 Mean bias 19 3.6.3 Root mean square error 19 CHAPTER 4 RESULTS AND DISCUSSION 20 4.1 Performance of 24-h Ensemble I-TRaP and Ensemble I-TRaP B for Typhoons during 2001-2012 20 4.1.1 Long term statistic 20 4.1.2 Case study 21 4.1.2.1 2012 Saola 21 4.1.2.2 2008 Sinlaku 22 4.1.2.3 2005 Talim 23 4.1.3 Error analysis 23 4.1.3.1 2012 Tembin 24 4.1.3.2 2009 Parma 24 4.2 Performance of Differents Periods Ensemble I-TRaP and Ensemble I-TRaP B for Typhoons during 2001-2012 25 4.2.1 Long term statistic 25 4.2.2 Case study 26 4.2.2.1 2010 Lionrock 26 4.2.2.2 2001 Lekima 27 4.3 Verification and Analysis of Independent Cases 28 4.3.1 Case study 2013 Usagi 28 4.3.2 Error analysis 2013 Kong_rey 29 CHAPTER 5 CONCLUSION AND FUTURE WORK 31 5.1 Conclusion 31 5.2 Future work 32 Bibliographies 34 Websites 39 Appendixes 40

    Aonashi, K., J. Awaka, M. Hirose, T. Kozu, T. Kubota, G. Liu, S. Shige, S., Kida, S. Seto, N. Takahashi, and Y. N. Takayabu, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119-136.
    Aonashi, K. and G. Liu, 2000: Passive Microwave Precipitation Retrievals Using TMI during the Baiu Period of 1998. Part I: Algorithm Description and Validation. J. Appl. Meteor., 39, 2024–2037.
    Bommarito, J. J. 1993: DMSP Special Sensor Microwave Imager Sounder (SSMIS). Proc. SPIE. 1935, 230-238.
    Chang, C. P., T. C. Yeh, and J. M. Chen, 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734-752.
    Chang, C. P., Y. T. Yang, H. C. Kuo, 2013: Large Increasing Trend of Tropical Cyclone Rainfall in Taiwan and the Roles of Terrain. J. Climate, 26, 4138–4147.
    Chang, Y. L., 2013: Applying GSMaP data and typhoon intensity variation to improve typhoon ranfall potential. Master's Thesis, National Central University, Chungli, Taiwan, pp.73 (in Chinese).
    Chen, G. R., 2010: Improving Typhoon Rainfall Forecasting in Tropical Rainfall Potential Technique (TRaP) by Considering Taiwan’s Terrain Effect and Environment Wind. Master's Thesis, National Central University, Chungli, Taiwan, pp.123 (in Chinese).
    Chen Y. C., K. W. Cheung, C. S. Lee, 2011: Some Implications of Core Regime Wind Structures in Western North Pacific Tropical Cyclones. Wea. Forecasting, 26, 61–75.
    Chen Y. C., K. W. Cheung, C. S. Lee, 2012: A Study on the Synoptic-Dynamical Characteristics of Compact Tropical Cyclones in the Western North Pacific. Mon. Wea. Rev., 140, 4046–4065.
    Cheung, K. K. W., L. R. Huang, and C. S. Lee, 2008: Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci., 8,1463-1474.
    Chiu, C. A., P. H. Lin, M. K. Hsieh, 2005: Data interpretation of error checking of daily temperature and rainfall data from CWB weather stations. Meteorological Bulletin, 45(3), 33-45。
    Ebert, E. E., 2011: Radius of reliability : A distance metric for interpreting and verifying spatial probabilistic warnings. CAWCR Research Letters. pp.4-10
    Ebert, E. E., M. Turk, S. J. Kusselson, J. Yang, M. Seybold, P. R. Keehn, R. J. Kuligowski, 2011: Ensemble tropical rainfall potential (eTRaP) forecasts. Wea. Forecasting, 26, 213-224.
    Ebert, E., A. E. Salemi, M. Turk, M. Spampata, and S. Kusselson, 2009: Validation of the ensemble tropical rainfall Potential (e-TRaP) for landfalling tropical cyclones. 16th Conference on Satellite Meteorology and Oceanography, AMS 89th Annual Meeting, Phoenix, AZ, USA, 12-15 January 2009.
    Ferraro, R. R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16715-16735.
    Gao, S., and L. S. Chiu, 2010: Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. Int. J. Remote Sens., 31, 4699–4710.
    Gao, S., and L. S. Chiu, 2012: Development of Statistical Typhoon Intensity Prediction: Application to Satellite-Observed Surface Evaporation and Rain Rate (STIPER). Wea. Forecasting, 27, 240–250.
    Holland, G., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723-745.
    Jaishwal, N., C. M. Kishtawal, and P. K. Pal, 2012: Cyclone intensity estimation using similarity of satellite IR images based on histogram matching approach. Atmos. Res., 118, 215–221.
    Ke, Y. H., 2013 : Research on I-TRaP typhoon rainfall potential with integrating different prediction paths. Master's Thesis, National Central University, Chungli, Taiwan, pp.97 (in Chinese).
    Kidder, S. Q., J. A. Knaff, S. J. Kusselson, M. Turk, R. R. Ferraro, and R. J. Kuligowski, 2005: The tropical rainfall potential (TRaP) technique. Part I: Description and examples. Wea. Forecasting, 20, 456-464.
    Kubota T., S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, M. Hirose, Y. N. Takayabu, K. Nakagawa, K. Iwanami, T. Ushio, M. Kachi, and K. Okamoto, 2007: Global Precipitation Map using Satelliteborne Microwave Radiometers by the GSMaP Project : Production and Validation, IEEE Trans. Geosci. Remote Sens., 45, 2259-2275.
    Lai, H. W., G. R. Liu, Y. L. Chang, T. H. Kuo, and J. C. Hwang, 2013: Apply GSMaP Global Rainfall Data to Improve I-TRaP Approach over Taiwan. Asian conference on remote sensing 2013, Bali, Indonesia, 20-24 October 2013.
    Liu, G. R., C. C. Chao, and C. Y. Ho, 2008: Applying satellite-estimated storm rotation speed to improve typhoon rainfall potential technique. Wea. Forecasting, 23, 259-269.
    Liu, G.-R., T.-H. Kuo, W.-J. Chen, and T.-H. Lin, 2011, Chapter 5. Prediction of Tropical Cyclone Rainfall Potential in Taiwan Mountainous Areas, RAINFALL FORECASTING, Editors: Tommy Wong, Hydrological Science and Engineering Series, Nova Science Publishers, ISBN: 978-1-61942-134-9.
    Monette, S. A., C. S. Velden, K. S. Griffin, C. M. Rozoff, 2012: Examining Trends in Satellite-Detected Tropical Overshooting Tops as a Potential Predictor of Tropical Cyclone Rapid Intensification. J. Appl. Meteor. Climatol., 51, 1917–1930.
    Okamoto K., T. Iguchi, N. Takahashi, K. Iwanami and T. Ushio, 2005: The Global Satellite Mapping of Precipitation (GSMaP) project, 25th IGARSS Proceedings, 3414-3416.
    Shige S., T. Yamamoto, T. Tsukiyama, S. Kida, H. Ashiwake, T. Kubota, S. Seto, K. Aonashi, and K. Okamoto, 2009: The GSMaP precipitation retrieval algorithm for microwave sounders. Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens, 47, 3084-3097.
    Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 3889-3896.
    Ushio, M. Kachi, and K. Okamoto, 2007: Global Precipitation Map using Satelliteborne Microwave Radiometers by the GSMaP Project: Production and Validation, IEEE Trans. Geosci. Remote Sens., 45, 2259-2275.
    Ushio T., T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N. Takahashi, T. Iguchi, M. Kachi, R. Oki, T. Morimoto, and Z. Kawasaki, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc., 87A, 137-151.
    Wang, T. A., C. C. Wu, and Y. L. Lin, 1997: An idealized numerical study of the effects of Taiwan topography on typhoons. Conference on Weather Analysis and Forecasting, Taipei, Taiwan, 3-5 March 1997.
    Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 1044-1056.
    Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831-1852.

    QR CODE
    :::