跳到主要內容

簡易檢索 / 詳目顯示

研究生: 唐富一
Fu-Yi Tang
論文名稱: 克爾-紐曼/共形場中的三點關聯函數
Three-point correlators in Kerr-Newman/CFTs
指導教授: 陳江梅
Chiang-Mei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 99
語文別: 英文
論文頁數: 95
中文關鍵詞: 三點關聯函數AdS/CFT對偶黑洞全像原理黑洞
外文關鍵詞: Holographic principle, black hole, AdS/CFT correspondence, Three-point correlators
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們首先回顧了Kerr黑洞在極端以及近極端的情況下與共形場論之間的對應關係。根據在共形場與在黑洞視界表面上計算出的熵是相等的,我們可以相信極端Kerr黑洞與共形場之間的確存在對應關係。更進一步藉由無質量的純量場在Kerr黑洞背景之中的散射,計算出在Kerr背景下純量場的吸收截面,與在邊界上的共形場中的兩點函數是一致的,所以Kerr黑洞在近極端的情況下與共形場之間也存在有對應關係。特別的,當無質量的純量場在頻率很低的情況下,其徑向波方程的解空間本身就含有SL(2,R)×SL(2,R)的共形對稱。我們利用這種特性研究Kerr-Newman黑洞,發現有兩種不一樣的共形場的對應關係,我們稱之為J圖像以及Q圖像。最後我們將原先在黑洞背景下計算的兩點函數推廣至三點函數,其結果與共形場中的三點函數相符。


    We review the conjecture of Kerr/CFT correspondence in extremal and near-extremal
    limit. By the matching of the CFT (Cardy formula) and black hole (Bekenstein-
    Hawking formula) entropies, the conjecture of extreme Kerr/CFT correspondence is
    confirmed. From the scattering of scalar field near the superradiance region in kerr
    geometry, the matching of the absorption cross section and the finite-temperature
    two-point function of dual CFT operator also implies the validity of near-extreme
    Kerr/CFT correspondence. Moreover, for generic Kerr black holes, the SL(2, R) ×
    SL(2, R) conformal symmetry can be obtained in the solution space of the radial wave
    equation at low frequency. The black hole/CFT can be extended to the Kerr-Newman
    (KN) black holes in which there are two individual pictures of dual CFT description,
    called J- and Q-pictures. Finally we discuss the generalization the computation of two-
    point function to the three-point function by assuming that there is a cubic interaction
    in the bulk geometry. The three-point functions in both J- and Q-pictures of KN
    geometry have a divergent term in the bulk integration near the boundary region. It
    is consistent with the CFT finite-temperature three-point function.

    1 Introduction 1 2 Kerr/CFT: central charges and temperatures 6 2.1 The NHEK geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Asymptotic symmetry group . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Central charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Kerr/CFT: superradiance scattering 14 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Near-NHEK geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Superradiant modes . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Macroscopic greybody factor . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Superradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Absorption probability . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 Near and far factors . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Microscopic greybody factor . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Conformal dimensions . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Real-time correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Kerr/CFT: hidden conformal symmetry 26 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Massless scalar wave equation . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Near region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 i4.4 Conformal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 CFT interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.6 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 KN/CFTs: twofold hidden conformal symmetries 33 5.1 The Kerr-Newman black hole . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Charged scalar field in the KN background . . . . . . . . . . . . . . . 34 5.3 Angular momentum J-picture . . . . . . . . . . . . . . . . . . . . . . 34 5.3.1 Hidden Conformal Symmetry . . . . . . . . . . . . . . . . . . 34 5.3.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3.3 Real-time correlator . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.4 Return to Kerr/CFT . . . . . . . . . . . . . . . . . . . . . . . 39 5.4 Charge Q-picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4.1 Hidden Conformal Symmetry . . . . . . . . . . . . . . . . . . 39 5.4.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4.3 Real-time correlator . . . . . . . . . . . . . . . . . . . . . . . 42 5.4.4 Return to RN/CFT . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6 Three-point function 46 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2 Two- and three-point functions in near-NHEK geometry . . . . . . . 48 6.2.1 Two point function . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.2 Three-point function . . . . . . . . . . . . . . . . . . . . . . . 50 6.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 The three-point function for hidden conformal symmetry of Kerr/CFT 57 6.4 Three-point function in KN/CFTs . . . . . . . . . . . . . . . . . . . . 60 6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.2 J-picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.3 Q-picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7 Conclusion 67 A Review of conformal field theory 72 A.1 Comformal group and algebra . . . . . . . . . . . . . . . . . . . . . . 72 A.2 Two-dimensional CFT . . . . . . . . . . . . . . . . . . . . . . . . . . 73 ii A.3 Conformal generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.4 Primary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.5 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.6 The Virasoro algebras in CFT . . . . . . . . . . . . . . . . . . . . . . 76 B Review of Anti de Sitter space 81 B.1 de Sitter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.2 Anti de Sitter (AdS) space . . . . . . . . . . . . . . . . . . . . . . . . 82 C Euclidean correlators in AdS/CFT 85 D Lorentzian correlators in AdS/CFT 90 E Symmetry and Casimir operator of AdS3 in KN/CFTs 94

    [1] J. M. Maldacena, “The Large N limit of superconformal field theories and super-
    gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
    (1999)] [arXiv:hep-th/9711200].
    [2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field
    theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-
    th/9905111].
    [3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,
    253 (1998) [arXiv:hep-th/9802150].
    [4] C. M. Chen and J. R. Sun, “Hidden Conformal Symmetry of the Reissner-
    Nordstrøm Black Holes,” JHEP 1008, 034 (2010) [arXiv:1004.3963 [hep-th]].
    [5] C. M. Chen, Y. M. Huang and S. J. Zou, “Holographic Duals of Near-extremal
    Reissner-Nordstrom Black Holes,” JHEP 1003, 123 (2010) [arXiv:1001.2833
    [hep-th]].
    [6] C. M. Chen, Y. M. Huang, J. R. Sun, M. F. Wu and S. J. Zou, “Twofold
    Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev. D
    82, 066004 (2010) [arXiv:1006.4097 [hep-th]].
    [7] C. M. Chen, J. R. Sun and S. J. Zou, “The RN/CFT Correspondence Revisited,”
    JHEP 1001, 057 (2010) [arXiv:0910.2076 [hep-th]].
    [8] J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A
    Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60, 104030 (1999) [arXiv:hep-
    th/9905099].
    [9] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking en-
    tropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].
    [10] M. Guica, T. Hartman, W. Song and A. Strominger, “The Kerr/CFT Corre-
    spondence,” Phys. Rev. D 80, 124008 (2009) [arXiv:0809.4266 [hep-th]].
    [11] A. Castro and F. Larsen, “Near Extremal Kerr Entropy from AdS(2) Quantum
    Gravity,” JHEP 0912, 037 (2009) [arXiv:0908.1121 [hep-th]].
    [12] A. Castro, A. Maloney and A. Strominger, “Hidden Conformal Symmetry of the
    Kerr Black Hole,” Phys. Rev. D 82, 024008 (2010) [arXiv:1004.0996 [hep-th]].
    [13] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
    Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Com-
    mun. Math. Phys. 104, 207 (1986).
    [14] D. T. Son and A. O. Starinets, “Minkowski-space correlators in AdS/CFT cor-
    respondence: Recipe and applications,” JHEP 0209, 042 (2002) [arXiv:hep-
    th/0205051].
    [15] M. Becker, S. Cremonini and W. Schulgin, “Extremal Three-point Correlators
    in Kerr/CFT,” JHEP 1102, 007 (2011) [arXiv:1004.1174 [hep-th]].
    [16] M. Becker, S. Cremonini and W. Schulgin, “Correlation Functions and Hid-
    den Conformal Symmetry of Kerr Black Holes,” JHEP 1009, 022 (2010)
    [arXiv:1005.3571 [hep-th]].
    [17] I. Bredberg, T. Hartman, W. Song and A. Strominger, “Black Hole Superradi-
    ance From Kerr/CFT,” JHEP 1004, 019 (2010) [arXiv:0907.3477 [hep-th]].
    [18] B. Chen and C. S. Chu, “Real-time correlators in Kerr/CFT correspondence,”
    JHEP 1005, 004 (2010) [arXiv:1001.3208 [hep-th]].
    [19] V. P. Frolov and K. S. Thorne, “Renormalized Stress-Energy Tensor Near the
    Horizon of a Slowly Evolving, Rotating Black Hole” Phys. Rev. D 39, 2125
    (1989).
    [20] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation func-
    tions in the CFT(d)/AdS(d + 1) correspondence,” Nucl. Phys. B 546, 96 (1999)
    [arXiv:hep-th/9804058].
    [21] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions
    in Quantum Gravity,” Phys. Rev. D 15, 2752 (1977).
    [22] H. Nastase, “Introduction to AdS-CFT,” arXiv:0712.0689 [hep-th].
    [23] Sean Carroll ”Spacetime and Geometry: An Introduction to General Relativity”
    ISBN-13: 978-0805387322
    [24] P. K. Townsend, “Black holes: Lecture notes,” arXiv:gr-qc/9707012.
    [25] J L Cardy ”Conformal invariance and universality in finite-size scaling” J. Phys.
    A: Math. Gen. 17 L385 1984
    [26] Di Francesco P., Mathieu P., Senechal D. ”Conformal field theory” Springer,
    1997
    [27] J. McGreevy, “Holographic duality with a view toward many-body physics,”
    Adv. High Energy Phys. 2010, 723105 (2010) [arXiv:0909.0518 [hep-th]].
    [28] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, “Cargese Lectures on the
    Kerr/CFT Correspondence,” arXiv:1103.2355 [hep-th].

    QR CODE
    :::