跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張中原
Chung-Yuan Chang
論文名稱: 應用於MPEG-4即時視訊平台中以線性模型為基礎的可調適性速率控制機制
SARS : A Linear Source Model Based Adaptive Rate Control Scheme for TCP-friendly Real-time MPEG-4 Video Streaming
指導教授: 吳曉光
Eric Hsiao-Kuang Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 92
語文別: 英文
論文頁數: 107
中文關鍵詞: 即時MPEG-4視訊可調適性速率控制線性模型
外文關鍵詞: Real-time MPEG-4 Video, Adaptive Rate Control, Linear Source Model
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著在Internet上或者無線網路中提供視訊串流服務的需求量大增,一個可以幫助視訊串流服務適合於隨時在變動的可用頻寬現制下的可調適性速率控制機制必須要被發展設計出來。隨時在變動的可用頻寬和視訊串流在網路上傳送的延遲時間讓即時視訊串流服務難以達到很高的頻寬使用率,並且也無法提供好的視訊品質給收看的使用者。MPEG-4是目前最被廣為接受採用的一個視訊串流的標準格式,而一個採用MPEG-4來作為視訊編碼解決方案的即時視訊串流系統中必須要提供一個能夠調整視訊壓縮位元率的控制機制來適應這個隨時隨地在改變的網路狀態。
    在這篇論文中,我們分析了當一個即時視訊串流服務傳送端採用了TCP-friendly的傳輸協定在Internet中傳送MPEG-4視訊時所產生的問題。而這篇論文主要著重在提供軟體層和壓縮層上問題的解決方案。根據這樣的目標,我們提供了一套解決方案叫做SARS。SARS是一個具有平滑而且可調適性的速率控制機制,而且它包含了三個主要的元件,分別為TFRS模組、LD模組和RSF模組。TFRS模組提供了視訊壓縮時比較平滑的速率,讓產生的視訊畫面間的畫質變動比較小,提供比較平滑的畫質。LD模組可以幫助視訊壓縮時讓壓縮位元率逼近它的目標位元率來減少傳送的延遲時間。RSF模組則提供了一個可調適性的速率控制機制,根據變動的頻寬來分配目標位元率,並且降低了被略過的畫面數目。最後,我們評估了SARS在做CBR和VBR壓縮時的效能,並且也針對不同的TCP-friendly傳輸協定進行模擬實驗。


    The increasing demand for streaming video applications on the Internet
    or wireless motivates the problem of building an adaptive rate control
    scheme which is adapted to the time-varying network condition.
    The time-varying available bandwidth and latency make the real-time
    streaming applications difficult to achieve high bandwidth utilization
    and video playout rate at receivers. MPEG-4 is now a widely accepted
    standard streaming format and a video streaming system which encodes
    the video sequence with MPEG-4 should provide an adaptive
    rate control mechanism to adapt to these changing conditions.
    In this thesis we analyze the problem of transmitting MPEG-4
    video over IP when senders use a TCP-friendly rate control protocol.
    This thesis is focused on solving the challenging issues in application
    layer, compression layer. With this aim, we provide a solution called
    ”SARS” (Smoothed and Adaptive Rate-control Scheme) in compression
    layer and application layer for an MPEG-4 video transmission
    system and discuss the characteristics of each its elements. The
    SARS contains three main components, including TFRS module, LD
    module, and RSF module. The TFRS module provides a smoothed
    rate and helps the video encoder to generate smoothed video quality.
    The LD module helps the video encoder to meet its target closer
    and lowers the transmitting delay. The RSF module provides an
    adaptive rate control scheme, reduces the number of skipped frames,
    and makes a smoother presentation. The overall performance of
    SARS will be evaluated in the CBR scenarios or VBR scenarios.
    We also evaluate the performance of SARS over several rate
    based congestion control protocols such as RAP, TFRC and TMRC.

    1 Introduction 1 1.1 Real-time Video Streaming over the Internet . . . . . . 1 1.2 An End-to-End Real-time Video Streaming System . . 5 1.2.1 Transport Layer Approaches . . . . . . . . . . . 6 1.2.2 Compression Layer Approaches . . . . . . . . . 8 1.3 Goals of This Thesis . . . . . . . . . . . . . . . . . . . 11 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . 12 2 Related Work 13 2.1 MPEG-4 Background . . . . . . . . . . . . . . . . . . . 13 2.1.1 Structure of The MPEG-4 Video Encoder . . . 14 2.1.2 MPEG-4 Fine-Granular Scalability . . . . . . . 20 v 2.2 MPEG-4 Video Rate Control . . . . . . . . . . . . . . 21 2.2.1 Researches on Source Model for Video Coding . 23 2.2.2 Researches on Rate Control for Video Coding . 26 2.3 Congestion Control in Transport Layer . . . . . . . . . 28 2.3.1 AIMD Based . . . . . . . . . . . . . . . . . . . 29 2.3.2 Equation Based . . . . . . . . . . . . . . . . . . 30 2.4 Motivation on The Proposed Rate Control Scheme . . 31 3 SARS : Smoothed and Adaptive Rate-control Scheme 34 3.1 Overview of The System Architecture . . . . . . . . . . 34 3.2 Bandwidth Adaptation: TCP-friendly Rate Control . . 35 3.3 TFRS Module : TCP-friendly Rate Smoother with Memory Wiper . . . . . . . . . . . . . . . . . . . . . . 36 3.4 LD Module : Linear Source Model for MPEG-4 Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1 Problem: Meet Target Bit Rate . . . . . . . . . 40 3.4.2 Statistical Properties of Video Source . . . . . . 41 3.4.2.1 The Analysis of Coding Bit Rate vs. Quantization Parameter . . . . . . . . 43 vi 3.4.2.2 The Analysis of Coding Bit Rate vs. DCT coefficients . . . . . . . . . . . . 43 3.4.3 The Linear Source Model . . . . . . . . . . . . . 51 3.4.3.1 Construction of Linear Source Model . 51 3.4.3.2 Adaptive Estimation of The Model Parameter . . . . . . . . . . . . . . . . 52 3.5 RSF Module : Reduced Skipped Frames and Adaptive Rate Control Scheme . . . . . . . . . . . . . . . . . . . 54 3.5.1 Initialization . . . . . . . . . . . . . . . . . . . . 55 3.5.2 GOP-Layer Rate Control . . . . . . . . . . . . . 56 3.5.3 Pre-Encoding Stage of Frame-Layer Rate Control 58 3.5.4 Macroblock-Layer Rate Control . . . . . . . . . 62 3.5.5 Post-Encoding Stage of Frame-Layer Rate Control 65 4 Experimental Results 67 4.1 Performance Evaluation of SARS under CBR and VBR 68 4.1.1 CBR: 768Kbps . . . . . . . . . . . . . . . . . . 68 4.1.2 CBR: 512Kbps . . . . . . . . . . . . . . . . . . 71 4.1.3 CBR: 256Kbps . . . . . . . . . . . . . . . . . . 74 4.1.4 VBR . . . . . . . . . . . . . . . . . . . . . . . . 76 vii 4.1.5 Summary of The Experimental Results . . . . . 79 4.2 Performance Evaluation of SARS Over Rate Based Congestion Control Protocols . . . . . . . . . . . . . . 81 4.2.1 Network Topology . . . . . . . . . . . . . . . . 81 4.2.2 2 TCP vs 2 Rate-Based Congestion Control Protocols . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.3 2 TCP vs 2 Rate-Based Congestion Control Protocols with 4 TCP Competing during 20s and 80s 89 5 Conclusion and Future Work 95 List of References 98 Appendix A Fluid-flow traffic model 104

    [1] H. Shojania and B. Li, “Experiences with mpeg-4 multimedia
    streaming.” ACM Multimedia, pp. 492-494, 2001.
    [2] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
    S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,
    K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang,
    “Recommendations on queue management and congestion avoidance
    in the internet,” RFC 2309, Informational, Apr. 1998.
    [3] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting real-time
    video over the internet: Challenges and approaches.” Proc. IEEE,
    vol. 88, pp. 1855-1877, Dec. 2000.
    [4] R. Braden, D. Clark, and S. Shenker, “Integrated services in the
    internet architecture: an overview,” RFC 1633, Jun. 1994.
    [5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
    W. Weiss, “An architecture for differentiated services,” RFC
    2475, IETF, Dec. 1998.
    [6] H.-J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for
    mpeg-4 video.” IEEE Trans. Circuits Syst. Video Technol., vol.
    10, pp. 878-894, Sep. 2000.
    [7] G. Carle and E. W. Biersack, “Survey of error recovery techniques
    for ip-based audio-visual multicast applications.” IEEE
    Networks, vol. 11, no. 6, pp. 24-36, Nov. 1997.
    [8] U. Horn, M. L. Klaus Stuhlm¨uller, and B. Girod, “Robust internet
    video transmission based on scalable coding and unequal error
    98
    protection,” Signal Processing: Image Communication, vol.15,
    no. 1-2, pp. 77-94, Sept. 1999.
    [9] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Resource allocation for
    multimedia streaming over the internet,” IEEE Trans. Multimedia,
    vol. 3, no. 3, pp. 339-355, Sept. 2001.
    [10] C.-H. Wang, R.-I. Chang, J.-M. Ho, and S.-C. Hsu, “Ratesensitive
    arq for real-time video streaming,” in Proc. GLOBECOM’
    03, San Francisco, USA, Dec. 2003.
    [11] L. Chiariglione, “Mpeg-4 faqs,” Technical report, ISO/IEQ
    JTC1/SC29/WG11, Jul. 1997.
    [12] “Overview of the mpeg-4 standard,” Doc. ISO/IEC
    JTC1/SC29/WG11, N4668, Mar. 2002.
    [13] “Information technology - coding of audiovisual objects - part 2:
    Visual,” Doc. ISO/IEC JTC1/SC29/WG11, N2502, FDIS 14496-
    2.
    [14] MPEG Homepage, http://www.cselt.it/mpeg/.
    [15] MPEG-4 Video, Proposed Draft Amendment (PDAM), ISO/IEC
    FGS v.4.0 14496-2, Mar. 2000.
    [16] Z. G. Li, C. Zhu, N. Ling, X. K. Yang, G. N. Feng, S. Wu,
    and F. Pan, “A unified architecture for real-time video-coding
    systems.” IEEE Trans. Circuits Syst. Video Technol., vol 13, pp.
    472-487, Jun. 2003.
    [17] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable
    99
    interenet video using mpeg-4.” Signal Processing: Image Commun.,
    no. 15, pp. 95-126, Sept. 1999.
    [18] H. Radha and Y. Chen, “Fine-granular-scalable video for packet
    networks.” Packet Video, Arp. 1999.
    [19] S. Nelakuditi, R. R. Harinath, E. Kusmierek, and Z.-L. Zhang,
    “Providing smoother quality layered video stream,” in Proc. of
    NOSSDAV’00, Chapel Hill, North Carolina, Jun. 2000.
    [20] P. de Cuetos and K. Ross, “Adaptive rate control for streaming
    stored fine-grained scalable video,” in Proc. of NOSSDAV’02, pp.
    3-12, Miami, Florida, May 2002.
    [21] P. de Cuetos, P. Guillotel, K. Ross, and D. Thoreau, “Implementation
    of adaptive streaming of stored mpeg-4 fgs video over tcp,”
    in Proc. of ICME’02, pp. 405-408, Lausanne, Switzerland, Aug.
    2002.
    [22] L. Zhao, J. Kim, and C.-C. J. Kuo, “Mpeg-4 fgs video streaming
    with constant-quality rate control and differentiated forwarding,”
    in Proc. VCIP’02, San Jose, CA, Jan. 2002.
    [23] D. T. Hoang and J. S. Vitter, “Efficient algorithm for mpeg video
    compression,” Wiley-Interscience Inc. Sep. 2001.
    [24] W. Ding and B. Liu, “Rate control of mpeg video coding and
    recording by rate-quantization modeling.” IEEE Trans. Circuits
    Syst. Video Technol., vol 6, pp. 12-20, Feb. 1996.
    [25] H.-M. Hang and J.-J. Chen, “Source model for tranform video
    coder and its application - part i: Fundamental theory.” IEEE
    100
    Trans. Circuits Syst. Video Technol., vol 7, pp. 287-298, Apr.
    1997.
    [26] B. Tao, B. Dickson, and H. Peterson, “Adaptive model-driven bit
    allocation for mpeg video coding.” IEEE Trans. Circuits Syst.
    Video Technol., vol. 10, pp. 147-157, Feb. 2000.
    [27] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using
    quadratic rate distortion model.” IEEE Trans. Circuits Syst.
    Video Technol., vol 7, pp. 246-250, Feb. 1997.
    [28] J. Ribas-Corbera and S. Lei, “Rate control in dct video coding
    for low-delay communications.” IEEE Trans. Circuits Syst. Video
    Technol., vol. 9, pp. 172-185, Feb. 1999.
    [29] J. Ribas-Corbera and S. Lei, “A frame-layer bit allocation for
    h.263+.” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp.
    1154-1158, Oct. 2000.
    [30] Z. Lei and N. D. Georganas, “Rate adaptaion transcoding for
    precoded video streams,” in Proc. ACM Multimedia’02, Juanles-
    Pins, France, Dec. 2002.
    [31] Z. Li, N. Ling, G. N. Feng, F. Pan, K. P. Lim, and S. Wu, “Adaptive
    rate control for real time video coding process,” in Proc.
    DCV’02, Clearwater, Florida, Nov. 2002.
    [32] Z. He, Y.-K. Kim, and S. K. Mitra, “Low-delay rate control for
    dct video coding via -doamin source modeling.” IEEE Trans.
    Circuits Syst. Video Technol., vol 11, pp. 928-940, Aug. 2001.
    101
    [33] Z. He and S. K. Mitra, “A linear source model and a unified rate
    control algorithm for dct video coding.” IEEE Trans. Circuits
    Syst. Video Technol., vol 12, pp. 970-982, Nov. 2002.
    [34] A. Vetro, H. Sun, and Y.Wang, “Mpeg-4 rate control for multiple
    video objects.” IEEE Trans. Circuits Syst. Video Technol., vol.
    9, pp. 186-199, Feb. 1999.
    [35] Video Group, MPEG-4 Video Verification Model Version 18.0,
    ISO/IEC JTC1/SC29/WG11, N4350, Jul. 2001.
    [36] F. Pan, Z. Li, K. Lim, and G. Feng, “Reducing frame skipping
    in mpeg-4 rate control scheme.” in Proc. ICASSP 2002, vol. 4,
    pp.3409-3412, Orlando, FL, May 13-17 2002.
    [37] F. Pan, Z. Li, K. Lim, and G. Feng, “A study of mpeg-4 rate control
    scheme and its improvements.” IEEE Trans. Circuits Syst.
    Video Technol., vol 13, pp. 440-446, May. 2003.
    [38] Y. R. Yand and S. S. Lam, “General aimd congestion control,”
    in Proc. ICNP 2000, Osaka, Japan, Nov. 2000.
    [39] D. Bansal and H. Balakrishnan, “Binomial congestion control
    algorithms,” in Proc. INFOCOM’01, Apr. 2001.
    [40] R. Rejaie, M. Handley, and D. Estrin, “Rap: An end-to-end ratebased
    congestion control mechanism for realtime streams in the
    internet,” in Proc. INFOCOM’99, New York, Mar. 1999.
    [41] I. Rhee, V. Ozdemir, and Y. Yi, “Tear: Tcp emulation at receiver
    - flow control for multimedia streaming,” NCSU Technical
    Report, Apr. 2000.
    102
    [42] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equationbased
    congestion control for unicast applications.” in Proc. ACM
    SIGCOMM Symposium on Communications Architecture and
    Protocols, Aug. 2000.
    [43] W. Tseng, E. Wu, and K. Chang, “Tmrc: A load-adaptive tcpfriendly
    rate control protocol for real-time multimedia applications,”
    Appear on Proc. on IEEE ICC 2004.
    [44] R. Puri, K.-W. Lee, K. Ramchandran, and V. Bharghavan, “An
    integrated source transcoding and congestion control paradigm
    for video streaming in the internet.” IEEE Trans. Multimedia,
    vol. 3, pp. 18-32, Mar. 2001.
    [45] S. Jin, L. Guo, I. Matta, and A. Bestavros, “A spectrum
    of tcp-friendly window-based congestion control algorithms.”
    IEEE/ACM Trans. Networking, vol. 11, pp. 341-355, Jun. 2003.
    [46] S. A. Winder, “Iso/iec 14496 (mpeg-4) video reference software,”
    Microsoft-FDAM1-2.4-021205.
    [47] http://www.isi.edu/nsnam/ns/.

    QR CODE
    :::