跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃世曜
Shih-Yao, Huang
論文名稱: 貧油正丁烷與富氫燃料之最小引燃能量量測: 電極熱損失與紊流效應
Minimum ignition energy measurements of lean n-butane and very rich hydrogen fuels: Effects of electrode heat losses and turbulence
指導教授: 施聖洋
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 層流和紊流最小引燃能量紊流促進引燃差別擴散效應電極熱損失效應紊流消散效應
外文關鍵詞: Laminar and turbulent minimum ignition energies, turbulent facilitated ignition, differential diffusion effects, electrode heat losses effects, turbulent dissipation effects
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高溫高壓雙腔體十字型風扇擾動紊流預混燃燒設備,結合火花引燃及量測系統,針對富油氫氣當量比 = 5.1 (有效Lewis數Le = 2.3 >> 1)及貧油正丁烷 = 0.7 (Le = 2.1 >> 1)燃料,量測在層流和紊流情況下的最小引燃能量(Laminar and Turbulent Minimum Ignition Energy, MIEL and MIET),並探討新近發現之電極火花紊流促進引燃(Turbulent Facilitated Ignition, TFI)現象。TFI現象為紊流在特定限制條件下,不但不會增加MIET,反而是讓MIET << MIEL。Wu et al. (2014)是第一個發現TFI現象的研究團隊,而Shy et al. (2017)進一步定量量測MIEL和MIET值,並發現TFI僅存在於Le >> 1及很小電極間距(dgap < 0.8 mm)的條件下。主要影響MIE變化與TFI現象的效應主要有三: (1)差別擴散(Differential diffusion);(2)電極熱損失(Electrode heat losses);(3)紊流消散(Turbulent dissipation)。我們針對小電極間距下所增加的電極熱損失與紊流消散效應進行研究。為了研究電極熱損失對MIEL和MIET影響,我們使用不同的電極直徑dth和dgap與特製的陶瓷管包覆的鎢電極來控制電極熱損失;在紊流消散效應部分,藉由改變紊流擾動速度(u' = 0 m/s ~ 8.3 m/s)觀察MIE的變化。實驗結果顯示,MIEL值會隨電極熱損失上升(dgap下降與dth增加)而上升,在小間距dgap = 0.58 mm及直徑dth = 1 mm時尤其明顯,甚至引燃能量Eig = 300 mJ仍無法引燃富氫燃氣。當使用較少熱損失之陶瓷包覆電極時,無論在層、紊流及不同電極間距下,皆能降低最小引燃能量,尤其在小間距dgap = 0.58 mm及層流時,下降特別明顯。但就算使用陶瓷包覆電極,在dgap < 1 mm時,TFI現象仍然發生,這表示TFI現象並非由電極熱損失所主導。接下來,我們針對紊流消散效應進行探討(TFI僅在dgap < 1mm時發生),在兩種燃氣中皆觀察到類似的非單調曲線,MIET首先隨u'上升而下降,但當u'大於某臨界值,MIET會隨u'上升而上升。我們使用Karlovitz數(Ka)進行分析,發現在兩種燃料的轉折皆發生在Ka = 0.8。若使用上述的三種效應來檢視此非單調的曲線,在層流時,因為火核有很大的正拉伸率(火核曲率半徑很小),差別擴散效應會降低Le >> 1火核之反應率,進而使引燃在層流時變得非常困難。在弱紊流時(Ka < 0.8),紊流可能會使初始火核稍微移動離開電極中心且有可能使火核具有負拉伸率,如此會提升Le >> 1火核之反應率,使MIET隨u'增加而下降。在強紊流時(Ka > 0.8),根據預混紊流火燄區域圖(Regime diagram of premix turbulent flames),Ka > 0.8時火燄可能進入薄反應區區間(Thin reaction zone regime),因為火燄變厚使差別擴散效應改變,同時紊流消散效應開始主導MIET值變化,使MIET隨u'增加而上升。


    This thesis measures laminar and turbulent minimum ignition energies (MIEL and MIET) of rich hydrogen/air mixture at equivalence ratio  = 5.1 (effective Lewis number, Le = 2.3 >> 1) and lean n-butane/air mixture at  = 0.7 (Le = 2.1 >> 1) in high-temperature, high-pressure, fan-stirred premixed turbulent combustion facility combining with electric spark ignition and its measurement system. We also attempts to investigate the recently-discovered turbulent facilitated ignition (TFI) phenomenon. Wu et al. (2014) were the first research group to discover TFI suggesting MIEL >> MIET. Shy et al. (2017) measured MIEL and MIET qualitatively. They discovered that TFI only occurs in Le >> 1 mixtures and at sufficiently small spark gap distance (dgap < 0.8 mm). There are mainly three effects influencing MIE behavior and TFI phenomenon: (1) differential diffusion, (2) electrode heat losses and (3) turbulent dissipation. Therefore, we try to investigate electrode heat losses effects induced from small dgap and turbulent dissipation effects. In order to understand electrode heat losses effects on MIEL and MIET, electrodes heat losses are controlled by changing electrode thickness (dth), dgap and using a pair of special made ceramic sheathed (CS) electrodes. To investigate turbulent dissipation effects, we observe MIE behavior with large range of turbulent fluctuation velocity (u' = 0 m/s ~ 8.3 m/s). Results show that MIEL will increase with electrode heat losses (decreasing dgap and increasing dth). Large ignition energy (Eig = 300 mJ) cannot even ignite rich hydrogen mixture in dgap = 0.58 mm and dth = 1 mm. When using CS electrodes with smaller electrode heat losses, both MIEL and MIET are smaller than that of the normal electrodes. However, even using the CS electrodes, MIEL is still larger than MIET when dgap < 1 mm suggesting that the occurrence of TFI is not dominated by electrodes heat losses. Next, we focus on turbulent dissipation effects (TFI only exists in dgap < 1mm). A similar non-monotonic trend can be observed in both fuels. MIET first decrease with u' and then increase with u' after a certain degree of u'. Karlovitz number (Ka) is used to analyze the aforesaid phenomenon and the transition of MIE decrement to increment happens at Ka = 0.8 for both fuels. We again used aforementioned three effects to examine this non-monotonic curve. In laminar conditions, the initial spark kernel is near spherical with large positive stretch (positive curvature owing to small flame kernel radius), which in turn reduces reaction rate of the Le >> 1 kernel due to differential diffusion effects. Thus, ignition becomes extremely difficult in quiescence. In lower turbulence (Ka < 0.8), turbulence could move the initial spark kernel slightly away from the center of electrodes and could also result in negative stretch spots that increase reaction rate of the Le >> 1 kernel. MIET decreases with increasing u'. In higher turbulence (Ka > 0.8), flame kernel might enter thin reaction zone regime basing on regime diagram of premix turbulent flames. Flame kernel thickness might change altering differential diffusion effects and turbulent dissipation effects start to dominate. MIET increases with increasing u'.

    中文摘要 i Abstract iii 致謝 v Contents vi List of Tables viii List of figures ix Nomenclature x Chapter  Introduction 1 1.1 Background and motivation 1 1.1.1 Premixed lean and turbulent combustion technology 1 1.1.2 Ignitability of mixture and minimum ignition energy 3 1.1.3 MIE transition and turbulent facilitated ignition 3 1.2 Objectives of this study 4 1.3 Thesis outline 5 Chapter II Literature Review 6 2.1 Minimum ignition energy 6 2.1.1 Concept and definition of minimum ignition energy 6 2.1.2 Fuel and equivalence ratio 7 2.1.3 Pressure and temperature 8 2.1.4 Electrode material and thickness 9 2.1.5 Electrode geometry, initial flow field and flame kernel shape 10 2.1.6 Pulse duration 13 2.1.7 Turbulence 16 2.2 Length scale analysis on ignition 16 2.2.1 Spark ignition mechanism and methods of analysis 16 2.2.2 Quenching distance and critical flame radius 17 2.3 MIE transition 19 2.4 Turbulent facilitated ignition 25 Chapter III Experimental facility and method 30 3.1 Turbulent premixed combustion facility 30 3.1.1 Ceramic sheathed electrodes 31 3.1.2 Experimental procedure 31 3.2 Minimum ignition energy measurement 31 3.3 Logistic regression method 32 Chapter IV Results and Discussions 38 4.1 Heat Losses Effects on MIE 38 4.2 Turbulent Effects on TFI 39 Chapter V Conclusion and Future Work 52 Bibliography 54

    [1] Y. Zifei, B. Anup, 2017 Global update light-duty vehicle greenhouse gas and fuel economy standards, 2017, ICCT (Internal council on clean transportation), https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards.
    [2] https://www.epa.gov/newsreleases/epa-proposes-affordable-clean-energy-ace-rule
    [3] http://www.isuzu.co.jp/world/technology/clean/diesel_gasoline02.html
    [4] ”Jidosha-Gijutsu year book” Journal of Society of Automotive Engineers of Japan, Vol. 70, 2016
    [5] ”Jidosha-Gijutsu year book” Journal of Society of Automotive Engineers of Japan, Vol. 71, 2017
    [6] New 2.5-liter Direct-injection, Inline 4-cylinder Gasoline Engine, 2016, Toyata global newsroom, https://newsroom.toyota.co.jp/en/powertrain/engine/.
    [7] https://www.mazda.com.tw/
    [8] https://insidemazda.mazdausa.com/newsroom/technology-forum/
    [9] K. Maruta, H. Nakamura, Super Lean-burn in SI Engine and Fundamental Combustion Studies, J Combust Soc JPN. 183 (2016) 9-19.
    [10] C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc Combust Inst. 31 (2007) 1401-1409.
    [11] S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust Sci Technol. 180 (2008) 1735-1747.
    [12] S.S. Shy, C.C. Liu, W.T. Shih. Ignition transition in turbulent premixed combustion. Combust Flame. 157 (2010) 341-350.
    [13] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust Flame. 160 (2013) 1755-1766.
    [14] S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc Combust Inst. 36 (2016) 1785-1791.
    [15] L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust Flame. 187 (2018) 87-95.
    [16] F. Wu, A. Saha, S. Chaudhuri, C.K. Law, Facilitated ignition in turbulence through differential diffusion, Physical Review Letter. 113 (2014) 024503(1-5).
    [17] S.S. Shy, M.T. Nguyen, S.Y. Huang, C.C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap? Combust Flame. 185 (2017) 1-3.
    [18] Y. Ko, R.W. Anderson, V.S. Arpaci, Spark Ignition of Propane-Air Mixtures Near the Minimum Ignition Energy: Part I. An Experimental Study, Combust Flame. 83 (1991) 75-87.
    [19] Y. Ko, R.W. Anderson, V.S. Arpaci, Spark Ignition of Propane-Air Mixtures Near the Minimum Ignition Energy: Part II. A Model Development, Combust Flame. 83 (1991) 88-105.
    [20] M.F. Calcote, C. A. Gregory, C.M. Barnett, R. B. Giemer, Spark ignition effect of Molecular Structure, Ind Eng Chem. 44 (1952) 2656-2662.
    [21] https://www.cpc.com.tw/life/classroom-more.aspx?id=45
    [22] M. Lawes, M.P. Ormsby, C.G.W. Sheppard, R. Wooley, The turbulent burning velocity of iso-octane/air mixtures, Combust Flame. 159 (2012) 1949-1959.
    [23] G. Cui, W. Zeng, Z. Li, Y. Fu, H. Li, J. Chen, Experimental study of minimum ignition energy of methane/air mixtures at elevated temperatures and pressures, Fuel. 175 (2016) 257-263.
    [24] G.F.W. Ziegler, E.P. Wagner, R.R. Maly, Ignition of lean methane-air mixture by high pressure glow and ARC discharges, 20th Symp Combust/Combust Inst. (1984) 1817-1824.
    [25] M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, 20th Symp Combust/Combust Inst. (1984) 133-140.
    [26] H.L. Olsen, R.B. Edmonson, E.L. Gayhart, Microchronometric schlieren study of gaseous expansion from an electric spark, J Appl Phys. (1984) 133-140.
    [27] M. Kono, S. Kumagai, T. Sakai, Ignition of gases by two successive sparks with reference to frequency effect of capacitance sparks, Combust Flame. 27 (1976) 85-98.
    [28] M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, Mechanism of flame kernel formation produced by short duration sparks, 22nd Symp Combust/Combust Inst. (1988) 1643-1649.
    [29] M. Kono, S. Kumagai, T. Sakai, Y. Ujiie, Analysis of Ignition Mechanism of Combustible Mixtures by Composite Sparks, Combust Flame. 91 (1992) 153-164.
    [30] M. Thiele, S. Selle, U. Riedel, J. Warnatz, U. Maas, Numerical simulation of spark ignition including ionization, Proc Combust Inst. 28 (2000) 1177-1185.
    [31] T. Yuasa, S. Kadota, M. Tsue, M. Kono, H. Nomura, effects of energy deposition on minimum ignition energy in spark ignition of methane/air mixtures, Proc Combust Inst. 29 (2002) 743-750.
    [32] S. Nakaya, K. Hotori, M. Tsue, M. Kono, D. Segawa, T. Kadota, Numerical Analysis on Flame Kernel in Spark Ignition Methane/Air Mixtures, J Propul Power. 27 (2011) 363-370.
    [33] S.P.M. Bane, J.L. Ziegler, J.E. Sherpherd, Investigation of the effect of electrode geometry on spark ignition, Combust Flame. 162 (2015) 462-469.
    [34] D.R. Ballal, A.H. Lefebvre, The Influence of Spark Discharge Characteristics on Minimum Ignition Energy in Flowing Gases, Combust Flame. 24 (1975) 99-108.
    [35] E.A. Watson, Ignition research work carried out by the Lucas organization with special reference to high altitude problems, Lucas Report No. L 5988; also, Chart. Mech. Eng. 3, 91 (1956).
    [36] C.C. Swett, Ignition of flowing gases, NACA Report. No. 1287 (1956).
    [37] M. Kono, S. Kumagai, T. Sakai, The optimum condition for ignition of gases by composite sparks, Symp Combust. 16 (1977) 757-766.
    [38] K.V.L. Rao, A.H. Lefebvre, Minimum ignition energies in flowing kerosine-air mixtures, Combust Flame. 27 (1976) 1-20.
    [39] A. Frendi, M. Sibulkin, Dependence of minimum ignition energy on ignition parameters, Combust Sci Tech. 73 (1990) 395-413.
    [40] V.S. Kravchenko, A.T. Eeygin, V.A. Yakovlev, Critical duration of an electrical discharge for ignition of methane-Air and hydrogen-Air mixtures, Combust Explos Shock Waves. 9 (1973) 523-524.
    [41] Q. Zhang, W. Li, S. Zhang, Effects of spark duration on minimum ignition energy for methane/air mixture, Process Saf Prog. 30 (2011) 154-156.
    [42] M. Esseghir, C.E. Polymeropoulos, Spark Ignition of near the lean limit CH4-Air mixtures at low pressures, Combust Flame. 73 (1988) 99-105.
    [43] T. Horstmann, W. Leuckel, B. Maurer, U. Maas Influence of turbulent flow conditions on the ignition of flammable gas/air‐mixtures, Process Saf Prog. 20 (2001) 215-224.
    [44] R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi, T. Oda, Minimum ignition energy of hydrogen–air mixture: Effects of humidity and spark duration, J Electrostat. 65 (2007) 87-93.
    [45] B. Lewis, G. von Elbe, Combustion, Flame and Explosions of Gases, Academic Press, New York, 1987 (1951,1961), pp. 333-361
    [46] Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York, 1985.
    [47] Z. Chen, M.P. Burke, Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc Combust Inst. 33 (2011) 1219-1226.
    [48] J.S. Santner, S.H. Won, Y. Ju, Chemistry and transport effects on critical flame initiation radius for alkanes and aromatic fuels, Proc Combust Inst. 36 (2017) 1457-1465.
    [49] D.R. Ballal, A.H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distance, Symp Combust. 15 (1975) 1473-1481.
    [50] D.R. Ballal, A.H. Lefebvre, The influence of spark discharge characteristics on minimum ignition energy in flowing gases, Combust Flame. 15 (1975) 99-108.
    [51] S.H. Lam, C. Casci, C. Bruno, Recent Advances in the Aerospace Sciences: In Honor of Luigi Crocco on His Seventy-fifth Birthday, Springer US, New York and London, 1985.
    [52] N. Peters, G.K. Batchelor, S. Davis, L.B. Freund, S. Leibovich, V. Tvergaard, Turbulent combustion, Cambridge University Press, New york, 2000.
    [53] M. Matalon, C. Cui, J.K. Bechtold, Hydrodynamic theory of premixed flames: effects of stoichiometric, variable transport coefficients and arbitrary reaction orders, J Fluid Mech. 487 (2003) 179-210.
    [54] H.A. Uranakara, S. Chaudhuri, K.N. Lakshmisha, On the extinction of igniting kernels in near-isotropic turbulence, Proc Combust Inst. 36 (2017) 1793-1800.
    [55] C.C. Liu, S.S. Shy, H.C. Chen, M.W. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc Combust Inst. 33 (2011) 1293-1299.
    [56] C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust Flame. 159 (2012) 2608-2619.
    [57] Shy, S.S., Lin, W.J. and Wei, J.C., An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc R Soc Lond A. 456 (2000) 1997-2019.
    [58] Shy, S.S., Lin, W.J. and Peng, K.Z., High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc Combust Inst. 28 (2000) 561-568.
    [59] Yang, T.S. and Shy, S.S., Two-way interaction between solid particles and homogeneous air turbulence: Particle settling rate and turbulence modification measurements, J Fluid Mech. 526 (2005) 171-216.
    [60] E. Mastorakos, Ignition of turbulent non-premixed flames, Prog Energy Combust Sci. 35 (2009) 57-97.
    [61] S.I. Yang, S.S. Shy, Global quenching of premixed CH4/air flames: Effects of turbulent straining, equivalence ratio, and radiative heat loss, Proc Combust Inst. 29 (2002)1841-1847.
    [62] S.S. Shy, Flame quenching by turbulence: Criteria of flame quenching, Combustion Phenomena: Selected Mechanisms of Flame Formation, Propagation and Extinction (J. Jarosinski and B. Veyssiere, eds.), Taylor & Francis, London, 2009, 110-118.
    [63] C.C. Liu, S.S. Shy, Y.C. Dong, M.W. Peng, More on global quenching of premixed CH4/diluent/air flames by intense near-isotropic turbulence, Combust Sci Technol, 184 (2012) 1916-1933.
    [64] S.P.M. Bane, Spark ignition: Experimental and numerical investigation with application to aviation safety, California Institute of Technology, Ph.D Thesis, 2010.

    QR CODE
    :::