| 研究生: |
游承書 Cheng-Shu You |
|---|---|
| 論文名稱: |
高階投影法求解那維爾-史托克方程組 High-order projection methods for the incompressible Navier-Stokes equations |
| 指導教授: |
楊肅煜
Suh-Yuh Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 25 |
| 中文關鍵詞: | 高階緊緻差分法 、有限差分法 、投影法 、不可壓縮那維爾-史托克方程組 |
| 外文關鍵詞: | projection method, high-order compact difference scheme, incompressible Navier-Stokes equations, finite difference scheme |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究投影法中的高階緊緻有限差分在非交錯網格下的空間離散方法求解非靜態不可壓縮的納維爾-史托克方程組。首先我們給定時間變數的半離散的格式,再經由投影技巧將該問題分割成兩個子問題,其中我們先求解反應-擴散方程從而得到一個中間速度場,接著將它投影到零散度空間進而取得下一個時間步的速度及壓力。對於子問題的空間變數離散,我們使用四階的緊緻有限差分法在非交錯網格下求其差分近似解。我們提供兩個數值實例來驗證此方法的精確度,包含具有正確解的流場問題和凹槽驅動流場問題。經由數值實驗結果觀察,我們確認此種高階投影法能夠取得合理的精確度。
In this thesis, we study the high-order compact difference schemes for spatial discretization on non-staggered grids in the projection methods for solving the unsteady incompressible Navier-Stokes equations. We first give a semi-discretization in time for the transient problem and then split the semi-discrete formulation into sub-problems by using the projection techniques, where we solve a reaction-diffusion equation to yield the intermediate velocity field and then project it onto the space of divergence-free vector fields to obtain the velocity and pressure at next time level. For the treatment of the spatial discretization of the sub-problems arising in the projection methods, we employ the high-order compact difference schemes of fourth-order accuracy on non-staggered grids. Two numerical examples are provided to demonstrate the accuracy of the proposed high-order projection methods, including the exact forced flow problem and the lid driven cavity flow problem. From the numerical results, we may observe that the proposed high-order projection methods can achieve a reasonable accuracy.
[1] J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85 (1989), pp. 257-283.
[2] O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, 27 (1998), pp. 421-433.
[3] D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible Navier-Stokes Equations, Journal of Computational Physics, 168 (2001), pp. 464-499.
[4] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, 22 (1968), pp. 745-762.
[5] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, 23 (1969), pp. 341-353.
[6] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer, New York, 1997.
[7] J. Donea and A. Huerta, Finite Element Methods for Flow Problems, Wiley, England, 2003.
[8] W. E and J.-G. Liu, Projection method I: convergence and numerical boundary layers, SIAM Journal on Numerical Analysis, 32 (1995), pp. 1017-1057.
[9] W. E and J.-G. Liu, Projection method III: spatial discretization on the staggered grid, Mathematics of Computation, 71 (2002), pp. 27-47.
[10] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Communications in Mathematical Sciences, 1 (2003), pp. 317-332.
[11] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.
[12] M. F. Fourni’e and A. Rigal, High order compact schemes in projection methods for incompressible viscous flows, Communications in Computational Physics, 9 (2011), pp. 994-1019.
[13] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48 (1982), pp. 387-411.
[14] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, 30 (1979), pp. 76-95.
[15] B. E. Griffith, An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, Journal of Computational Physics, 228 (2009), pp. 7565-7595.
[16] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 6011-6045.
[17] W. D. Henshaw, A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grid, Journal of Computational Physics, 113 (1994), pp. 13-25.
[18] P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A new high-accuracy compact difference scheme for reaction-convection-diffusion problems with a small diffusivity, submitted for publication, 2011.
[19] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, 59 (1985), pp. 308-323.
[20] M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady viscous incompressible flows, Journal of Scientific Computing, 6 (2001), pp. 29-45.
[21] J.-G. Liu, J. Liu and R. L. Pego, Stable and accurate pressure approximation for unsteady incompressible viscous flow, Journal of Computational Physics, 229 (2010), pp. 3428-3453.
[22] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, Birkh‥auser, 1993.
[23] W. F. Spotz, High-Order Compact Finite Difference Schemes for Computational Mechanics, Ph.D. Dissertation, the University of Texas at Austin, December 1995.
[24] R. Temam, Sur l’approximation de la solution des ’equations de Navier-Stokes par la m’ethode des pas fractionnaires ii, Archive for Rational Mechanics and Analysis, 33 (1969), pp. 377-385.
[25] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM Journal on Scientific Computing, 7 (1986), pp. 870-891.
[26] Z. Zheng and L.Petzold, Runge-Kutta-Chebyshev projection method, Journal of Computational Physics, 219 (2006), pp. 976-991.