| 研究生: |
江耿安 Geng-An Jiang |
|---|---|
| 論文名稱: |
波長移相雙繞射干涉儀之研究 Study of wavelength phase-shifted double diffraction interferometer |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 光學量測 、波長移相 、光柵繞射 、雷射二極體 、位移量測 、相位擷取 |
| 外文關鍵詞: | Optical measurement, Wavelength phase-shift, Grating diffraction, Laser Diode, Displacement measurement system, Phase analysis |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一波長移相雙繞射干涉儀,此位移量測系統分為兩部分,在光學架構部分,由於光柵的繞射效應可以將光柵位移的訊息轉換成光的相位訊息,利用鏡子反射繞射光,使含有光柵位移相位的繞射光再一次反射回光柵產生繞射,因為通過了兩次光柵,產生兩次繞射提高了相位對應光柵位移的靈敏度,並且在反射鏡部分設計一個固定的光程差,使波長的變化可以轉換成相位變化。
在相位解析系統中,以雷射二極體搭配訊號產生器調制波長,並調整調制訊號所需的振幅,使量測訊號在高點與低點因為波長的不同有90度的相位差,此相位差使得量測訊號在訊號高點與低點位置有一個正餘弦關係存在,將量測訊號送入開發出的相位解析程式,即可求出相位值,最後推算出光柵位移量,免去了使用昂貴的鎖相放大器進行相位解析,降低了系統的成本,使得本系統的利用價值大大提高。實驗結果顯示出此系統具有良好的穩定性及重復性,在考慮高頻雜訊的情況下,系統的解析度達1.5 nm,靈敏度為g/d=0.72 ˚/nm。優於市售的位移感測器,本系統可應用於精密位移量測、精密位移平台的震動量測、微動定位系統。
In this paper, we present a wavelength phase-shifted double diffraction interferometer for measuring displacement. This displacement measurement system is divided into two sections, in the optical configuration section, according to the optical phase variation resulting from the moving grating, we design a light path, it can be used to increase the sensitivity of the phase change, and using the wavelength-modulated laser beam which passing through an unequal-path-length optical configuration by two mirrors, it can change the system phase.
On the other hand, using the wavelength-modulated laser produce two signals that phase difference of 90 degrees can be sent into a phase analyze system. The phase analysis system obtained grating displacement by the relationship between the sine position light intensity and cosine position light intensity, eliminating the need for a lock-in amplifier, which makes utilization value of the system greatly, the experimental results show that the system has high stability and repeatability, if only high frequency noises are considered, the measurement resolution of our system is about 1.5 nm, the sensitivity is 0.72 ˚/nm and the measureable speed is 5.5 um/s. The system can be a useful sensor to monitor the displacement and vibration of the precision motorized stage using in wide scientific research.
參考文獻
[1] J.Y. Lee, H.Y. Chen, C.C. Hsu, C.C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensors and Actuators A 137 (2007) 185–191.
[2] K.H. Chen, H.S. Chiu, J.H. Chen, Y.C. Chen, “An alternative method for measuring small displacements with differential phase difference of dual-prism and heterodyne interferometry,” Measurement 45 (2012) 1510–1514.
[3] N.R. Sivakumar, B. Tan, K. Venkatakrishnan, “Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry,” Optics Communications 257 (2006) 217–224.
[4] H. Guotian, L. Changrong, J. helun, Y. Lu, H. Shanglian, “Real-time surface profile measurement using a feedback type of sinusoidal phase modulating interferometer,” Optik 120 (2009) 553–557.
[5] Z.C. Jian, P.J. Hsieh, H.C. Hsieh, H.W. Chen, D.C. Su, “A method for measuring two-dimensional refractive index distribution with the total internal reflection of p-polarized light and the phase-shifting interferometry,” Optics Communications 268 (2006) 23–26.
[6] C.C. Hsu, J.Y. Lee, D.C. Su, “Thickness and optical constants measurement of thin film growth with circular heterodyne interferometry,” Thin Solid Films 491 (2005) 91 – 95
[7] T.Q. Lin, Y.L. Lu, C.C. Hsu, “Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement,” Optics Express 18 (2010) 27560-27566.
[8] S.T. Lin, K.T. Lin, W.J. Syu, “Angular interferometer using calcite prism and rotating analyzer,” Optics Communications 277 (2007) 251–255.
[9] K. Wang, L. Zeng, “Double-grating frequency shifter for low-coherence heterodyne interferometry,” Optics Communications 251 (2005) 1–5
[10] J.Y. Lee, K.Y. Lin, S.H. Huang, “Wavelength-modulated heterodyne speckle interferometry for displacement measurement,” Proc. of SPIE Vol. 7389 73892G-1.
[11] C.C. Hsu, Y.Y. Sung, Z.R. Lin, M.C. Kao, “Prototype of a compact displacement sensor with a holographic diffraction gating,” optics&laser Technology 48 (2013) 200-205.
[12] J.Y. Lee, M.P. Lu., “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Optics Communications 284 (2011) 857–862.
[13] J. Schwider, R. Burow, K.E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Applied Optics 22 (1983) 3421-3432.
[14] A. Kimuraa, W. Gaoa, Y. Arai, Z. Lijiang, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precision Engineering 34 (2010) 145–155.
[15] Peter de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Applied Optics 39(2000) 2658-2663.
[16] Z. Fen, C. Lei, X.C. Sheng, “Simultaneous Phase-Shifting Interferometry Based on Two-Dimension Grating,” ACTA OPTICA SINICA 27(2007) 663-667.
[17] W.H. Stevenson, “Optical Frequency Shifting by Means of a Rotating Diffraction Grating,” Applied Optics 9 (1970) 649-652.
[18] K.H. Chen, J.H. Chen, S.H. Lu, W.Y. Chang , C.C. Wu, “Absolute distance measurement by using modified dual-wavelength heterodyne Michelson interferometer,” Optics Communications 282 (2009) 1837–1840.
[19] C.J. Yu, J.G. Chang, C.E. Lin, C.C. Lee, C. Chou, “Digital circularly polarized heterodyne ellipsometer,” Thin Solid Films 518 (2010) 3391–3395.
[20] B.F. Wang, X.Z. Wang, Osami Sasaki, Z.L. Li, “Sinusoidal phase-modulating interferometer insensitive to intensity modulation of a laser diode for displacement measurement,” Applied Optics 51 (2012) 1939-1944.
[21] J.Y. Lee, H.L. Hsieh, Gilles Lerondel, Regis Deturche, M.P. Lu, J.C. Chen, “Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement,” APPLIED OPTICS 50 (2011) 1272-1279.
[22] J.F. Lin, Y.L. Lo, “The new circular heterodyne interferometer with electro-optic modulation for measurement of the optical linear birefringence,” Optics Communications 260 (2006) 486–492.
[23] J. Kemp, X.Q. Jiang, Y.N. Ning, A.W. Palmer, K.T.V. Grattan, “A displacement measurement system, utilizing a Wollaston interferometer,” Optics & Laser Technology 30 (1998) 71-75.
[24] W.H. Stevenson, “Optical frequency shifting by means of rotating diffraction grating,” Applied Optics 9 (1970) 649–652.
[25] D.C. Su, M.H. Chiu, C.D. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements,” Journal of Optics 27 (1996) 19-23.
[26] C.C. Hsu, C.C. Wua, J.Y. Lee, H.Y. Chen, H.F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Optics Communications 281 (2008) 2582–2589.
[27] D. Xiaoli, S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Measurement Science and Technology 9 (1998) 1031–1035.
[28] J. Lawalla, E. Kessler, “Michelson interferometry with 10 pm accuracy”, Review of Scientific Instruments 71 (2000) 2669-2676.
[29] T. Kubota, M. Nara, T. Yoshino, “Interferometer for measuring displacement and distance,” Optics Letters 12 (1987) 310-312.
[30] G.C. Wang, X.D. Xie, S.H Yan, “Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry,” Proc. of SPIE 7656 (2010) 76562X-1-76562X-7.
[31] C.F. Kao, S.H. Lu, H.M. Shen, K.C. Fan, “Diffractive Laser Encoder with a Grating in Littrow Configuration,” Japanese Journal of Applied Physics 47 (2008) 1833-1837.
[32] F. Cheng, K.C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Applied Optics 50 (2011) 4550-4556.
[33] J. Chen, Y. Ishii, K. Murata, “Heterodyne interferometry with a frequency-modulated laser diode,” Applied Optics 27 (1988) 124-128
[34] S.T. Lin, S.L. Yeh, C.W. Chang, “Absolute angular displacement determination using a Mach-Zehnder interferometer,” Journal of Optics A: Pure and Applied Optics 10(9) (2008) 095304.
[35] 陳昇暉,干涉光學講義(2011),國立中央大學,光電科學研究所。
[36] 安毓英,曾小東,光學感測與測量,五南圖書出版公司,台北市,2004。
[37] 李貴宇,「波長調制外差式光柵干涉儀之研究」,國立中央大學,碩士論文,民國96年。
[38] 林坤億,「波長調制外差散班干涉術之研究」,國立中央大學,碩士論文,民國97年。
[39] 吳維庭,「準共光程外差光柵干涉術之研究」,國立中央大學,碩士論文,民國97年。
[40] 盧洺霈,「反射式準共光程外差光柵干涉儀應用於長行程精密定位技術之研究」,國立中央大學,碩士論文,民國99年。
[41] 陳思均,「波長調制外差散班干涉術應用於角度量測之研究」,國立中央大學,碩士論文,民國101年。