跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊競輝
Jing-Hui Zhuang
論文名稱: 單頻和雙頻帶可重組式微波被動元件
Single- and Dual-Band Reconfigurable Microwave Passive Components
指導教授: 林祐生
Yo-Shen Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 154
中文關鍵詞: 可重組式微波被動元件分支線耦合器鼠競耦合器帶通濾波器帶拒濾波器
外文關鍵詞: Reconfigurable, Microwave Passive Components, branch-line coupler, rat-race coupler, band-pass filter, band-stop filter
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以可重組式微波被動元件為設計目標,首先,提出一個具有四種不同電路功能的可重組式微波被動電路,中心頻率設計於0.5 GHz。藉由控制二極體開關改變微帶線的連接方式,可切換成分支線耦合器、鼠競耦合器、帶通濾波器與帶拒濾波器等四種不同的功能,整體電路尺寸為 130.2 mm × 104.9 mm,電氣尺寸在中心頻率 0.5 GHz 下為 0.4089 λg × 0.3294 λg。
    其次,使用橋式T線圈(Bridged-T Coil)取代微帶線以縮小尺寸,於切換開關的部分則改以電晶體實現,並於砷化鎵積體電路製程實現積體化可重組式微波被動元件,其操作中心頻率為10 GHz,可切換為分支線耦合器、帶通濾波器與帶拒濾波器三種不同電路功能。整體電路尺寸為 1.796 mm × 1.331 mm,電氣尺寸在中心頻率 10 GHz 下為 0.060 λ0 × 0.044 λ0。
    因應多頻、多模的操作需求,接續並發展雙頻可重組式微波被動元件設計,採用雙頻橋式T線圈(Dual-Band Bridged-T coil)為基本組件,達成雙頻帶的分支線耦合器及雙頻帶通濾波器兩種功能。電路操作中心頻率為9.5及24 GHz,同樣使用砷化鎵積體電路製程實現,整體電路尺寸為 1.361 mm × 1.15 mm,電氣尺寸在9.5 GHz為 0.043 λ0 × 0.036 λ0,在24 GHz 則為 0.11 λ0 × 0.09 λ0。


    In this study, novel reconfigurable microwave passive components are proposed. First, a 0.5-GHz reconfigurable microwave circuit with four different circuit functions is presented. The four different functions are branch-line coupler, rat-race coupler, band-pass filter, and band-stop filter, which are achieved by using the p-i-n diode switches to change the interconnections of the microstrip lines. A design example in PCB is presented, and the circuit size is 130.2 mm × 104.9 mm, while the electrical size is around 0.4089 λg × 0.3294 λg at 0.5 GHz.
    Secondly, a 10-GHz on-chip reconfigurable microwave passive component in GaAs pHEMT process is presented. By using bridged-T coils to replace the microstrip lines for circuit area reduction, and by using transistors to realize the switches, it can be switched to three different functions including branch-line coupler, band-pass filter, and band-stop filter. The circuit size is only 1.796 mm × 1.331 mm while the electrical size is around 0.060 λ0 × 0.044 λ0 at 10 GHz.
    Driven by the demand of multi-frequency and multi-mode wireless communication apparatus, the design of a dual-band on-chip reconfigurable microwave passive component is also developed. Dual-band bridged-T coils are employed as the building blocks, and the functions of a dual-band branch-line coupler and a dual-band band-pass filter are achieved in a single circuit. The operating frequencies are set as 9.5 and 24 GHz, and it is also implemented using a GaAs pHEMT process. The circuit size is only 1.361 mm × 1.15 mm. The corresponding electrical size is around 0.043 λ0 × 0.036 λ0 at 9.5 GHz and 0.11 λ0 × 0.09 λ0 at 24 GHz.

    論文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 章節介紹 4 第二章 多功能可重組式微波被動元件 5 2.1 電路架構與工作原理 5 2.2 射頻切換開關設計 9 2.3 可重組式微波被動元件 17 2.3.1 功能一: 分支線耦合器 19 2.3.2 功能二: 鼠競耦合器 23 2.3.3 功能三: 帶通濾波器 29 2.3.4 功能四: 帶拒濾波器 31 2.4結果與討論 33 2.5 改版說明與電路架構 35 2.6 可重組式微波被動元件改版設計 37 2.6.1 功能一: 分支線耦合器改版設計 39 2.6.2 功能二: 鼠競耦合器改版設計 43 2.6.3 功能三: 帶通濾波器改版設計 49 2.6.4 功能四: 帶拒濾波器改版設計 51 2.7 小結與文獻比較 53 第三章 積體化可重組式微波被動元件 57 3.1 電路基本架構及原理 57 3.2 電路尺寸微縮 60 3.2.1 橋式T線圈等效傳輸線 60 3.2.2 設計公式 62 3.2.3 電路佈局設計 66 3.3 電晶體開關設計 73 3.4 電路實作 76 3.4.1 功能一: 分支線耦合器 78 3.4.2 功能二: 帶通濾波器 83 3.4.3 功能三: 帶拒濾波器 84 3.5 製程變異分析與驗證 86 3.6 小結與文獻比較 89 第四章 積體化雙頻可重組式微波被動元件 93 4.1 電路架構及原理 93 4.2 雙頻橋式T線圈設計 96 4.2.1 理論推導 96 4.2.2 電路佈局設計 98 4.3 電晶體開關設計 108 4.4 砷化鎵雙頻可重組式微波被動元件與實作 110 4.4.1 功能一: 雙頻分支線耦合器 112 4.4.2 功能二: 雙頻帶通濾波器 115 4.4.3結果與討論 116 4.5 電路改版設計 121 4.6 改版電路模擬與量測結果 125 4.6.1 功能一: 雙頻分支線耦合器 125 4.6.2 功能二: 雙頻帶通濾波器 129 4.7結論及文獻比較 130 第五章 總結及未來展望 133 參考文獻 135

    [1] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立中央大學, June 2011.
    [2] 曾子豪, "無頻寬減損之微小化集總元件被動電路," 碩士論文 國立中央大學, June 2012.
    [3] W. R. Eisenstadt and Y. Eo,"S-parameter-based IC interconnect transmission line characterization," in IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 15, no. 4, pp. 483-490, Aug. 1992.
    [4] 方偉廷, "基於橋式T線圈之微型化切換式波束成型模組," 博士論文 國立中央大學, June 2017.
    [5] 林承運, "微型化雙頻混成耦合器," 碩士論文 國立中央大學, June 2017.
    [6] B. W. Kim and S. W. Yun,”Varactor-tuned combline bandpass filter using step-impedance microstrip lines,” IEEE Trans. Microw. Theory Tech.,vol. 52 ,no. 4,pp. 1279-1283,Apr. 2004
    [7] J. Lee, E. J. Naglich , H. H. Sigmarsson, P. Dimitrios and W. J. Chappell,”Tunable inter-resonator coupling structure with positive and negative values and its application to the field-programmable filter array (FPFA),”IEEE Trans. Microw. Theory Tech.,vol. 59,no. 12,pp3389-3400,Dec. 2011
    [8] H. Fan, J. Geng, X. Liang, R. Jin, and X. Zhou,“A three-way reconfigurable power divider/combiner,” IEEE Trans. Microw. Theory Techn.,vol. 63, no. 3, pp. 986–998, Mar. 2015.
    [9] S. Kim and J. Jeong, “Reconfigurable 1:3 power divider using coupled lines,” Electron. Lett., vol. 45, no. 22, pp. 1141–1143, Oct. 2009.
    [10] H. N. Chu, H. Liao, G. Li and T. Ma, "Novel phase reconfigurable synthesized transmission line and its application to reconfigurable hybrid coupler", Proc. 47nd Eur. Micro. Conf., pp. 1077-1080, 2017.
    [11] T. Lee, J. Laurin and K. Wu, "Reconfigurable Filter for Bandpass-to-Absorptive Bandstop Responses,"in IEEE Access,vol.8,pp.6484-6495,2020.
    [12] X. Zhu, T. Yang, P.-L. Chi, and R. Xu, ‘‘Novel reconfigurable filtering rat-race coupler, branch-line coupler, and multiorder bandpass filter with frequency, bandwidth, and power division ratio control,’’ IEEE Trans. Microw. Theory Techn., early access,.2019.
    [13] 鄭廷翰, "可重組式微波被動元件," 碩士論文 國立中央大學, June 2018.
    [14] Y.-C. Tseng and T.-G. Ma, “On-chip X-band branch-line coupler using glass integrated passive device technology,” Electron. Lett., vol. 48, no. 25, pp. 1605–1606, Dec. 2012.
    [15] C.-L. Chang and C.-H. Tseng, “Design of 38-GHz branch-line coupler in glass-substrate integrated passive device technology,” in Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Taipei, Taiwan, Aug. 2016, pp. 1–3.
    [16] H. N. Chu, G. Li and T. Ma, "Dual-mode coupler with Branch-line/Rat-race responses on integrated passive device process," 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany,2019,pp.82-84,2019.
    [17] X.-H. Luo et al., “A miniaturized on-chip BPF with ultra wide stopband based on lumped pi-section and source-load coupling,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 8, pp. 516–519, Aug. 2019.
    [18] H. Zhu, X. Zhu, Y. Yang and Y. Sun, "Design of miniaturized On-Chip Bandpass Filters using Inverting-Coupled inductors in (Bi)-CMOS technology," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 2, pp. 647-657, Feb. 2020.
    [19] H. Zhu, X. Ning, Z. Huang and X. Wu, "An Ultra-Compact On-Chip reconfigurable Bandpass Filter With Semi-Lumped topology by using GaAs pHEMT technology," in IEEE Access, vol. 8, pp. 31606-31613, 2020.
    [20] C. S. Tsai and G. Qiu, “Wideband microwave filters using ferromagnetic resonance tuning in flip-chip YIG-GaAs layer structures,” IEEE Trans.Magn., vol. 45, no. 2, pp. 656–660, Feb. 2009
    [21] B. Kim, J. Lee, J. Lee, B. Jung, and W. J. Chappell, ‘‘RF CMOS integrated on-chip tunable absorptive bandstop filter using Q-tunable resonators,’’IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1730–1737, May 2013.
    [22] E.-W. Chang and Y.-S. Lin, ‘‘Miniature multi-band absorptive bandstop filter designs using bridged-T coils,’’ IEEE Access, vol. 6, pp. 73637–73646, 2018.
    [23] Y. Lin, C. Hsu, H. Chuang and C. Chen, "A miniature 26-/77-GHz dual-band branch-line coupler using standard 0.18-µm CMOS technology," 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, 2010, pp. 219-222.
    [24] W.-T. Fang, E.-W. Chang, and Y.-S. Lin, ‘‘Bridged-T coil for miniature dual-band branch-line coupler and power divider designs,’’ IEEE Trans. Microw. Theory Techn., vol. 66, no. 22, pp. 889–901, Feb. 2018.
    [25] Y. Lin and C. Lin, "Miniature dual-band quadrature coupler with arbitrary power division ratios over the two bands," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 2, pp. 634-646, Feb. 2020.
    [26] Um, Y., Nguyen, C.: ‘High-Isolation multimode multifunction 24-/60-GHz CMOS dual-bandpass filtering T/R switch’, IEEE Microw. Wirel. Compon. Lett., 2018, pp. 696-698.
    [27] V. N. Rao Vanukuru and V. Krishna Velidi, "CMOS 35/70 GHz Dual-Band Bandpass filter with five transmission zeros using compact Stub-loaded Coupled-Line unit," 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 2019, pp. 1-3.
    [28] Y.-R. Wang and Y.-S. Lin, ‘‘Size-reduction of dual-wideband bandpass filters using bridged-T coils,’’ IEEE Access, vol. 7, pp. 42836–42845, 2019.
    [29] M. Pozar, Microwave Engineering, Fourth, John Wiley & Sons, Inc., 2011.

    QR CODE
    :::