| 研究生: |
吳詩涵 Shih-han Wu |
|---|---|
| 論文名稱: |
鎳鈀金及鎳金墊層電遷移誘發消耗研究 |
| 指導教授: |
劉正毓
Cheng-yi Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 鎳鈀金墊層 、錫銅焊料 、電遷移 、鎳金墊層 |
| 外文關鍵詞: | ENEPIG, ENIG, electromigration |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗選用不同成份Cu添加的三種錫銅焊料,Sn0.2Cu、Sn0.7Cu及Sn1Cu,分別迴焊於化鎳鈀金(ENEPIG)以及化鎳金(ENIG)兩種基材上,通以電流密為10000A/cm2的電流。觀察電遷移效應對於不同墊層陰極消耗的現象,及界面介金屬化合物之影響,實驗溫度為150℃,實驗時間從0小時到220小時。經電遷移效應後,我們發現不論對哪一種墊層,與銅濃度的錫銅焊料(ex: Sn1Cu)焊接之墊層呈現較明顯抗電遷移現象,因為生成在介面的三元的(Cu,Ni)6Sn5界金屬化合物擁有較穩定的層狀結構;而且,在高銅濃度的錫銅焊料與ENEPIG墊層反應之下,因電遷移導致的陰極鎳層消耗,相對於ENIG墊層相比會比較緩和;反之,在低銅濃度的錫銅焊料的情況,兩種墊層在陰極墊層的消耗值卻與高銅焊料的結果相反,因此,推斷ENEPIG中的無電鍍鈀是主要的原因,特別是無電鍍鈀與不同錫銅焊料反應下會造成不同的介面金屬化合物的形態及結構,例如:介面處在反應後是否生成三元的(Pd,Ni)Sn4相,若是有生成此種相會造成Ni原子的消耗以達到此相的三元穩定態,但若在與高銅添加的焊料反應下,根據相圖便不會有此(Pd,Ni)Sn4相的生成,因此依據銅濃度的多寡有不同的介面相產生。
In this study, we investigated the EM effect on the joint interfaces of the Pb-free Sn(Cu) solder/ENEPIG solder joints at different annealing temperatures. The applied current density is 104 A/cm2. The compositions of Sn(Cu) solders joined with ENEPIG pad are SnxCu (x=0.2,0.7,1). According to the preliminary results, a serious EM-induced Ni(P) consumption occurred. With increasing of the Cu content in the Sn(Cu) solders, the resistance to the EM-induced Ni(P) consumption wound be enhanced. In other words, the more Cu content in the Sn(Cu) solders, the less consumption of the ENEPIG pad. Also , we study the EM effect on the ENIG bond-pads joined with the same Sn(Cu) solder bumps at the same EM conditions. We found that, as compared to the previous Sn(Cu) ENEPIG results, the degree of the Ni(P) consumption is much serious and it also depends on the Cu content in the Sn(Cu) solder bumps.
[1] P. J. Clarke, A. K. Ray, and C. A. Hogarth, “Electromigration—a tutorial introduction”International Journal of Electronics, Vol 69, pp. 333-338, (1990)
[2] J. Tao, N. W. Cheung, and C. Hu, “Characterization and Modeling of Electromigration Failures in Multilayered Interconnects and Barrier Layer Materials”, IEEE Electron Device Letters, 14, Pp.554-556, (1993)
[3] M. Sekiguchi, K. Sawada, M. Fukumoto, and T. Kouzaki,
“Electromigration in AlSiCu/TiN/Ti interconnects with Ti and TiN additional layers”, Journal of Vacuum Science & Technology B, 12, pp. 2992-2996, (1994)
[4] Ohkubo T; Hirotsu Y; Nikawa K, ” Molecular dynamics simulation of electromigration of nano-sized metal lines”, MATERIALS TRANSACTIONS JIM, Vol 37, pp:454-457(1996)
[5] Tu, K. N., ”Reliability challenges in 3D IC packaging technology”, MICROELECTRONICS RELIABILITY, vol 15, pp 517-523 (2011)
[6] J. H. Lau Flip, Chip Technologies. New York: McGraw-Hill; 1996.
[7] C. E. Ho, S. C. Yang, C. R. Kao, “Interfacial reaction issues for lead-free electronic solders”, J Mater Sci: Mater Electron, 18, p 155, (2007).
[8] K. Zeng, K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng. R, 38, 55 (2002)
[9] A. Rahn , “The Basics of Soldering”, John Wiely & Sons, New York, (1993)
[10] The National Technology Roadmap for Semiconductors. San Jose, CA: Semiconductor Industry Association; 2003.
[11] J. H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, Chapter 1、3、6、15(1996)
[12] J. H. Lau, “Chip on Board Technologies for Multichip Modules”, Van Nostrand Reinhold, An Interational Thomson Publishing Company, New York, Chapter5(1994)
[13] 潘金平,「基板型半導體構裝市場及技術趨勢」,工業材料151 期,
p78-85(1999)
[14] 呂宗興,「電子構裝技術的發展歷程」,工業材料 115 期,p.49(1996)
[15] S. Brandenbery and S. Yeh, proceedings of the surface MountInternational Conference and Exposition, SMI98, San Jose, CA August pp.337-344(1998)
[16] C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in Sn–Pb solder strips as a function of alloy composition”, J. Appl. Phys. 88, 5703(2000)
[17] Y. H. Lin, Y. C. Hu, Johnson Tsai, and C. Robert Kao, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper” Int’lSymposium onelectronic Materials and Packaging, pp.253-258(2002)
[18] B.K Kim, S.J Lee, J. Y Kim, K. Y. Ji at el, “Origin of Surface Defects in PCB Final Finishes by the Electroless Nickle Immersion Gold Process”, J. Electron. Mater., 37, 4, (2008)
[19] 楊延容,「鎳鈀金對於鎳金的優點」,裕維電子 p1(2010)
[20] Lam Leung,羅門哈斯電子材料,印刷線路板技術,科技專刊(2008)
[21]陳文泰,「錫銅無鉛銲料與Ni基材界面反應之研究」,碩士論文 (1991)
[22] Lilin Liu, Deming Liu, Ran Fu, Yiu Fai Kwan, Chun Ho Yau, and Tong-Yi Zhang,” Cu out-diffusion kinetics in pre-plated Cu-alloy leadframes investigated by a developed EDX-based oxidation test”, IEEE Transactions on Advenced Package, 29, 4, (2006)
[23] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao, “Effects of Minor Fe, Co, and Ni Additions on the Reaction between SnAgCu Solder and Cu”, Journal of Alloys and Compounds, 478, pp. 121-127(2008)
[24] K. N. Tu, “Electromigration in Stressed Thin Films”, Phys. Rev. B, 45,pp 1409-1413 (1992)
[25] C.E Ho, S.W. Lin, Y.C. Lin, “Effects of Pd concentration on the interfacial reaction and mechanical reliability of the Sn–Pd/Ni system”, Journal of Alloys and Compounds, Vol 509, pp. 7749– 7757 (2011)