| 研究生: |
黃俞瑄 Yu-Hsuan Huang |
|---|---|
| 論文名稱: |
鉍摻雜之矽化鎂熱電材料性能之分析 Thermoelectric Properties of Bi-Doped magnesium silicide (Mg2Si) |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 矽化鎂化合物 、熱電性質 、鉍 、急冷旋鑄 |
| 外文關鍵詞: | Magnesium silicide, Thermoelectric properties, Bismuth, Melt spinning |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
歸因於最近的能源危機,研究人員一直致力於尋找更好的能源安排方式,特別是通過提高能源系統效率。熱電發電機具有將廢熱轉化為電能的優點,在此方面是為一強力的候選者。過去常見的熱電材料有Bi2Te3、PbTe-BiTe,而比較新興的熱電材料有Mg2Si N-type 、Mn2Si P-type 、方鈷礦 Skutterudites CoSb等等,在本研究中,考慮到低成本與環保的好處,我們嘗試合成鉍、鎂和矽作為材料系統製作熱電材料。
本研究是將在經過滾動式研磨機充分混合的粉體,通過在氬氣氛下在爐管中進行固態反應法反應,製備不同比例的鉍摻雜矽化鎂化合物(Mg2Si+Bix,X=0.01, 0.02, 0.03),為增加其載子濃度,以達到電導的提升。隨後在研磨和篩選緻密化後進行火花電漿燒結(SPS)。另外也透過急冷旋鑄法為縮小其晶粒大小,以降低其熱導。
量測的部分通過X光繞射分析和SEM測量並觀察完整樣品的組成和微觀結構。通過雷射閃光法熱傳導分析儀(LFA)、阿基米德、ZEM-3和示差掃描熱分析儀(DSC)研究熱電性能,以獲得包括熱導係數,電導率和 Seebeck 係數等參數,經過計算以獲得最終的數字和熱電優值ZT。本研究在鉍摻雜0.02的部分,擁有熱電優質 ZT=0.384。最終目標是製造高 ZT 值的矽化鎂化合物,以作為具有高性能轉換效率的熱電材料應用。
Since the recent energy crisis, researchers have dedicated in searching for a better way to utilize energy, especially by increasing energy system efficiency. Thermoelectric generators might be the predominant candidate, owing to its ability of transferring waste heat into electric power. In this work, taking the benefits of low costing and eco-friendly, we attempt to synthesis bismuth, magnesium, and silicon were selected as the material system. Bi-doped magnesium silicide compounds were prepared by reacting in tube furnace under argon atmosphere after mixing them all with the rolling machine. Spark plasma sintering (SPS) was later operated after grinding and screening for densification. In addition, we also try to decrease the grain size by melt spinning. The composition and microstructure of complete sample were measured and observed by using X-ray diffraction and SEM, respectively. The thermoelectric properties were be studied by laser flash analysis (LFA), Archimedes, ZEM-3, and differential scanning calorimeters (DSC) to obtain the parameter including thermal conductivity, electrical conductivity, and Seebeck coefficient in order to get the final figure and merit ZT. The final goal is to fabricate the high-ZT magnesium silicide that possesses high performance for energy applications.
[1] T.J. Seebeck, “Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
[2] http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf
[3] J.C. Peltier, “Nouvelles expériences sur la caloricité des courans électrique,” Annales de Chimie et de Physique, 56, 371(1834)
[4] http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history
[5] H.J. Goldsmd, R.W. Dougl, “The use of semiconductors in thermoelectric refrigeration”, British Journal Applied Physics, 5, 386 (1954).
[6] https://ejournal.stpi.narl.org.tw/sd/download?source=1020609.pdf&vlId=B6846D84-150C-4DB5-BFBE-59E2D8B370B2&nd=1&ds=1
[7] https://chem.au.dk/forskning/forskningscentre/center-for-materials-crystallography/research/energy-materials/thermoelectrics/
[8] R. Santos, S.A. Yamini, S.X. Dou, “Recent progress in magnesium-based thermoelectric materials.” Journal of Materials Chemistry A, 6(8), 3328–3341(2018).
[9] W.M. Yim, F.D. Rosi, “Compound tellurides and their alloys for. Peltier cooling-a review”, Solid State Electronics, 15, pp.1121-1140, (1972).
[10] Y. Noda, M. Orihashi, I.A. Nishida, “Preparation and thermoelectric properties of Ag or K doped PbTe”, Mater Trans JIM , 39, pp.602-605, (1998).
[11] J.L. Harringa, B.A. Cook “Application of hot isostatic pressing for.consolidation of n-type silicon-germanium alloys prepared by mechanical alloying”, Mater Sci Eng B, 60, pp. 137–142, (1999).
[12] X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, “A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications”, Renewable and sustainable energy reviews, 32, pp.486-503, (2014).
[13] S. Twaha, J. Zhu, Y. Yan, B. Li. ”A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement.” Renewable and Sustainable Energy Reviews, 65, 698–726(2016)
[14] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect”, Nature, 455, pp.778-781, (2008).
[15] T.M. Tritt, “Thermoelectric phenomena materials, and. applications”, Annu. Rev. Mater. Res., 41, pp.433-448, (2011).
[16] https://www.itsfun.com.tw/%E7%86%B1%E9%9B%BB%E6%95%88%E6%87%89/wiki-6134906-9341885
[17] https://www.qsstudy.com/physics/explain-seebeck-effect
[18] https://www.mn.uio.no/fysikk/english/research/projects/bate/thermoelectricity/
[19] https://www.itread01.com/content/1544751246.html
[20] https://www.studyadda.com/notes/jee-main advanced/physics/current-electricity-charging-discharging-of-capacitors/peltier-effect/8183
[21] https://www.easyatm.com.tw/wiki/%E7%86%B1%E9%9B%BB
[22] http://letslearnnepal.com/class-12/physics/electricity/thermometric-effect/thomsons-effect/
[23] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced materials, 19, pp.1043-1053, (2007).
[24] N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano Letters, Vol. 9, No. 2, pp.711-715, (2009).
[25] A.F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, (1957).
[26] A. Shakouri, “Recent developments in semiconductor. thermoelectric physics and materials”, Annu. Rev. Mater. Res., 41, pp.399-431, (2011).
[27] D.M. Rowe, ed., Handbook of thermoelectrics, Boca Raton: CRC, (1995).
[28] R. Morris, R. Redin and G. Danielson, Phys. Rev., 09, 1909–1915(1958)
[29] M.W. Heller and G.C. Danielson, J. Phys. Chem. Solids, 23, 601–610.(1962)
[30] P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki and M.C. Record, Comput. Mater. Sci., 50, 847–851.(2011)
[31] K. Kutorasinski, B. Wiendlocha, J. Tobola and S. Kaprzyk, Phys. Rev. B: Condens. Matter Mater. Phys., 89, 8.(2014)
[32] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin and M.V. Vedernikov, Phys. Rev. B: Condens. Matter Mater. Phys., 74, 045207.(2006)
[33] H.L. Gao, T.J. Zhu, X. B. Zhao and Y. Deng, Intermetallics, 56, 33–36.(2015)
[34] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin and M. V. Vedernikov, 2005 International Conference on Thermoelectrics, p. 7.(2005)
[35] W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang and C. Uher, Phys. Rev. Lett., 108.(2012)
[36] D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC. Press, Taylor & Francis Group, Boca Raton, FL, 1st edn, (2006).
[37] P. Gao, I. Berkun, R.D. Schmidt, M.F. Luzenski, X. Lu, P. Bordon. Sarac, E. D. Case and T. P. Hogan, J. Electron. Mater., 43, 1790–1803.(2013)
[38] S. Ganeshan, S. L. Shang, Y. Wang and Z. K. Liu, J. Alloys Compd., 498, 191–198(2010)
[39] K. Yin, X. Su, Y. Yan, Y. You, Q. Zhang, C. Uher, M. G. Kanatzidis. and X. Tang, Chem. Mater., 28, 5538–5548.(2016)
[40] S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder and S.W. Kim, Science, 348, 109–114.(2015)
[41] D. Wu, L.-D. Zhao, X. Tong, W. Li, L. Wu, Q. Tan, Y. Pei, L. Huang, J.F. Li, Y. Zhu, M. G. Kanatzidis and J. He, Energy Environ. Sci., 8, 2056–2068.(2015)
[42] Q. Zhang, X. Li, Y. Kang, L. Zhang, D. Yu, J. He, Z. Liu, Y. Tian. and B. Xu, J. Mater. Sci.: Mater. Electron., 26, 385–391.(2014)
[43] Y. Gelbstein, J. Davidow, S. N. Girard, D. Y. Chung and M. Kanatzidis, Adv. Energy Mater., 3, 815–820.(2013)
[44] S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar and R. C. Budhani, Appl. Phys. Lett., 101, 213902.(2012)
[45] H.J. Goldsmid, “Introduction to Thermoelectricity”, Springer, 2nd. edn, (2016).
[46] V.K. Zaitsev, M.I. Fedorov, I.S. Eremin and E.A. Gurieva, in. Thermoelectrics Handbook: Macro to Nano, ed. D. M. Rowe, CRC Press, Boca Raton, FL, USA, ch. 29.(2006)
[47] S. Wang and N. Mingo, Appl. Phys. Lett., 94, 203109.(2009)
[48] N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. R. Salvador. and H. Kleinke, J. Electron. Mater., 45, 6052–6058.(2016)
[49] Q. Zhang, J. He, X. B. Zhao, S. N. Zhang, T. J. Zhu, H. Yin and T. M. Tritt, J. Phys. D: Appl. Phys., 41, 185103.(2008)
[50] X. Wang and Z. M. Wang, Nanoscale Thermoelectrics, Springer, (2014).
[51] 周雅文,「火花電漿燒結技術於熱電材料開發之應用」,工業材料雜 誌,287期,2010年11月。
[52] D.A. Ditmars, S. Ishihara, S.S. Chang, and G. Bernstein, “Enthalpy. and heat-capacity standard reference material : synthetic sapphire (α-Al2O3) from 10 to 2250 K ”, JOURNAL OF RESEARCH of the National Bureou of Standards, Vol.87, No. 2, pp. 159-163,(1982).
[53] A. Kolezynski, P. Nieroda, P. Jelen, M. Sitarz, and K.T. Wojciechowski. “Theoretical and experimental spectroscopic studies of Bi dopant location in Mg2Si.” Vibrational Spectroscopy, 76, 31–37.(2005)
[54] M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martín-González, “Skutterudites as thermoelectric materials: revisited.” RSC Advances, 5(52), 41653–41667.(2005)