| 研究生: |
廖昱婷 Yu-Ting Liao |
|---|---|
| 論文名稱: | A review and comparison of continuity correction rules: the normal approximation to the binomial distribution |
| 指導教授: |
江村剛志
Takeshi Emura |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 二項分配 、信賴界線 、連續性校正 、控制圖 、常態近似 、統計製程管制 |
| 外文關鍵詞: | Binomial distribution, Confidence limit, Continuity correction, Control chart, Normal approximation, Statistical process control |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在應用統計中,使用二項分配近似常態分配使用連續性校正是非常有用的。首先,論文的第一部分,回顧二項分配和中央極限定理。如果樣本數較大,二項分配會近似於常態分配。連續性校正是為了進一步提高二項分配近似常態分配的準確,其中較廣為人知的連續性較正為Yates’s correction for continuity (Yates, 1934; Cox, 1970)。此外我們還介紹比較少人知道的Cressie’s finely tuned continuity correction (Cressie, 1978)。我們將連續性較正應用在統計製程的問題中。此外,我們進行數值模擬研究,比較Yates’s correction for continuity跟Cressie’s finely tuned continuity correction。
In applied statistics, the continuity correction is useful when the binomial distribution is approximated by the normal distribution. In the first part of this thesis, we review the binomial distribution and the central limit theorem. If the sample size gets larger, the binomial distribution approaches to the normal distribution. The continuity correction is an adjustment that is made to further improve the normal approximation, also known as Yates’s correction for continuity (Yates, 1934; Cox, 1970). We also introduce Cressie’s finely tuned continuity correction (Cressie, 1978), which are less known for statisticians. We discuss the application of these continuity corrections to the problem of statistical process control and confidence limit. In addition, we perform numerical studies to compare these corrections.
Abramowitz M, Stegun IA (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Dover, New York.
Blyth CR, Still HA (1983). Binomial confidence intervals. Journal of the American Statistical Association 81:108-116.
Burr IW (1979). Elementary Statistical Quality Control, 1rd ed. Marcel Dekker, Inc. , New York.
Burden RL, Faires JD (2011). Numerical Analysis, 9rd ed. Brooks/Cole. Boston.
Casella G, Berger RL (2002). Statistical Inference, 2rd ed. Duxbury Press, Australia.
Chen W (2008). Introduction to Complex Analysis, Macquarie University. https://rutherglen.science.mq.edu.au/wchen/lnicafolder/lnica.html.
Cox DR (1970). The continuity correction. Biometrika 57: 217-219.
Cressie N (1978). A finely tuned continuity correction, Ann. Inst. Statist. Math 30: 435-442.
Duran RI, Albin SL (2009). Monitoring a fraction with easy and reliable settings of the false alarm rate. Quality and Reliability Engineering International, 25(8): 1029–1043.
Emura T, Ho YT (2016), A decision theoretic approach to change point estimation for binomial CUSUM control charts, Sequential Analysis 35 (No.2): 238-253.
Emura T, Lin YS (2015). A comparison of normal approximation rules for attribute control charts. Quality and Reliability Engineering International 31 (No.3): 411–418.
Feller W (1968). An Introduction to Probability Theory and Its Applications, volume I, 3rd ed. John Wiley & Sons, Inc. New York.
Fuh CD, Kou S, Luo SF, Wong HC (2015). On Continuity Correction for First-Passage Times in Double Exponential Jump Diffusion Models 2nd GOSS Private Equity & Ninth RMI Annual Risk Management Joint Conference, 30 & 31 July 30-31, Regis Hotel Singapore.
Haber M (1982). The continuity correction and statistical testing, International Statistical Review 50: 135-144.
Hansen P (2011). Approximating the binomial distribution by the normal distribution - error and accuracy, U.U.D.M. Project Report 2011:18.
Makri FS, Psillakis ZM. (2011). On runs of length exceeding a threshold: normal approximation. Statistical Papers, 52(3), 531-551.
Montgomery DC (2009). Statistical Quality Control: A Modern Introduction, 6rd ed. John Wiley & Sons, New York.
Pradhan V, Evans JC, Banerjee T (2013). Binomial confidence intervals for testing non-inferiority or superiority: a practitioner’s dilemma. Statistical Methods in Medical Research, 0962280213498324
Schader M, Schmld F (1990). Charting small sample characteristics of asymptotic confidence intervals for the binomial parameter p. Statistical Papers, 31: 251-264.
Shewhart WA (1931). Economic Control of Quality of Manufactured, Journal of the American Statistical Association 27 (No. 178), 215-217.
Yates F (1934). Contingency tables involving small numbers, and the χ2 test, Journal of the Royal Statistical Society 1(2), 217–235.