| 研究生: |
林軒宇 Xuan-Yu Lin |
|---|---|
| 論文名稱: |
歐式空間二距離集合之探討 A study of two-distance set in Euclidean space |
| 指導教授: |
俞韋亘
Wei-Hsuan Yu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 二距離集合 、球面二距離集合 |
| 外文關鍵詞: | Two-distance set, Spherical two-distance set |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中,首先先介紹二距離集合的定義,以及相關的文獻探討。之後介紹二個計算最大二距離集合個數的方法,線性規劃和半正定規劃。以及列出在 3 和 4 維中,若固定兩個內積值,去找此集合上界為整數的構造,與計算這些構造的最小能量是否為現在找出來的最小的解。然後用線性規劃證明當內積值為 −1、0,最大二距離集合的上限為 2n。最後列出 3 維中,特殊角的構造和 3 維二距離集合個數為 5 個點和 6 個點的所有構造。
In this thesis, we first introduce the definition of the two-distance set and the related literature discussion. Second, two methods for calculating the maximum two-distance set
are introduced, graph representation, linear programming and semidefinite programming method. Third, we try to find the structures if the upper bound of such two-distance set are integer, and check whether it is an energy minimization configuration. Fourth, when the inner product values are −1 and 0, using linear programming to prove that, the maximum two-distance set is 2n. Finally, the constructions of two-distance set of the special angles and the cardinality of two-distance set with 5 points and 6 points are listed in 3-dimensions.
參考文獻
[1] L. Kelly, “Distance sets,” Canadian Journal of Mathematics, vol. 3, pp. 187–194, 1951.
[2] H. T. Croft, “9-point and 7-point configurations in 3-space,” Proceedings of the London Mathematical Society, vol. 3, no. 1, pp. 384–384, 1963.
[3] S. Einhorn and I. Schoenberg, “On euclidean sets having only two distances between points ii,” in Nederl. Akad. Wetensch. Proc. Ser. A, vol. 69, pp. 479–488, 1966.
[4] D. G. Larman, C. A. Rogers, and J. J. Seidel, “On two-distance sets in euclidean space,” Bulletin of the London Mathematical Society, vol. 9, no. 3, pp. 261–267, 1977.
[5] A. Blokhuis, “A new upper bound for the cardinality of 2-distance sets in euclidean space,” in North-Holland Mathematics Studies, vol. 87, pp. 65–66, Elsevier, 1984.
[6] P. Delsarte, J. Goethals, and J. Seidel, “Spherical codes and designs,” Geometriae Dedicata, vol. 6, no. 3, pp. 363–388, 1977.
[7] P. Lisoněk, “New maximal two-distance sets,” Journal of Combinatorial Theory, Series A, vol. 77, no. 2, pp. 318–338, 1997.
[8] O. R. Musin, “Spherical two-distance sets,” Journal of Combinatorial Theory, Series A, vol. 116, no. 4, pp. 988–995, 2009.
[9] A. Barg and W.-H. Yu, “New bounds for spherical two-distance sets,” Experimental Mathematics, vol. 22, no. 2, pp. 187–194, 2013.
[10] W.-H. Yu, “New bounds for equiangular lines and spherical two-distance sets,” SIAM Journal on Discrete Mathematics, vol. 31, no. 2, pp. 908–917, 2017.
[11] E. J. King and X. Tang, “New upper bounds for equiangular lines by pillar decomposition,” SIAM Journal on Discrete Mathematics, vol. 33, no. 4, pp. 2479–2508, 2019.
[12] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.
[13] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control (V. Blondel, S. Boyd, and H. Kimura, eds.), Lecture Notes in Control and Information Sciences, pp. 95–110, Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.
[14] A. Glazyrin and W.-H. Yu, “Upper bounds for s-distance sets and equiangular lines,” Advances in Mathematics, vol. 330, pp. 810–833, 2018.
[15] E. Bannai and E. Bannai, “A survey on spherical designs and algebraic combinatorics on spheres,” European Journal of Combinatorics, vol. 30, no. 6, pp. 1392–1425, 2009.
[16] N. J. A. Sloane, “Neil j. a. sloane: Home page. http://NeilSloane.com, 6 2012.