跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃士銘
Shih-Ming Huang
論文名稱: 南海之熱帶氣旋所引起強烈降溫作用與藻類繁生之研究:左右不對稱之機制探討及生地化模組之改進
Tropical cyclone induced strong cooling and phytoplankton bloom in the South China Sea : A mechanistic investigation of the asymmetric response and improvement of the biogeochemical module
指導教授: 林沛練
Pay-Liam Lin
黃如瑤
Leo Oey
劉康克
Kon-Kee Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 454
中文關鍵詞: 熱帶氣旋藻類繁生左右不對稱生地化模式
外文關鍵詞: tropical cyclone, phytoplankton bloom, asymmetric, biogeochemical model
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱帶氣旋從北半球海面經過後,所引起右側降溫作用與藻類繁生現象經常被觀測到,並且已經普遍被歸納為: 氣旋右側較強的風場與風-海流的共振作用,導致此往右側傾斜的趨勢。然而,我們使用高解析度的海洋物理-生地化(ATOP-NPZD)耦合模式,發現單獨的垂直混合過程只會產生弱的不對稱現象。進一步的研究結果顯示,不對稱的藻類繁生現象是由於右側強烈的次中尺度(sub-mesoscale)的垂直環流胞、往右側傾斜之冷水的等溫線與在次表層形成的噴流一起共同作用所造成。當我們使用一個雙重時間尺度的漸進展開分析,發現這些較緩慢發展的特徵都是經由,活躍和快速振盪的近慣性內波所引起之Reynolds切應力的共振所導致。值得一提的是,雖然這過程較慢,但是這些現象都發生在一周之內。
    除此之外,我們進一步發展使用新的海洋物理-生地化耦合模式(ATOP-Photo-SiNE),我們發現在較長期的的模擬中,效果較佳,其結果顯示在熱帶氣旋過後的7-10天之內,矽藻會先大量的生長,然後再自表層水體沉降,如此一來能較快速降低表層的營養鹽,抑制海表面浮游植物繼續的繁生,使得熱帶氣旋過後一星期以上海表面的Chl-a濃度不會過度生長而且能較快速的回復正常狀態。證明海洋生物的反應也扮演了重要的海洋生地化回復機制。因此,在模式中擁有矽藻部門之較複雜的Photo-SiNE生地化模式,對於探討熱帶氣旋所引起較長期海洋生地化之反應是必須的。


    The rightward tendency (in northern hemisphere) of enhanced phytoplankton bloom often observed in the wake of a tropical cyclone has commonly been attributed to the rightward bias of mixing due to stronger wind and wind-current resonance. We demonstrated using a high-resolution biophysical model (ATOP-NPZD) that vertical mixing alone resulted only in weak asymmetry. The bloom asymmetry was caused instead by intense sub-mesoscale recirculation cells produced on the right side, rightward shift of cool isotherms, and spin-up of a subsurface jet. We showed using a two-time scale asymptotic expansion that these slower evolving features were forced by resonance Reynolds stresses of the energetic and rapidly oscillating near-inertial internal waves.
    In addition, we further developed and used a new ocean physical - biogeochemical coupled model (ATOP-Photo-SiNE) which simulated a better result of long time period. During 7~10 days after tropical cyclone passed, the diatom would grow fastly and then sink from surface layer that quickly reduced the DIN (dissolved inorganic nitrogen) concentration of surface layer that inhibited the development of phytoplankton bloom. Therefore, the surface chlorophyll-a concentration didn’t overgrow and fastly return to normal conduction. Our result suggests that the biological responses also plays an important role in marine biogeochemical feedback. The participation of diatom in the more complex Photo-SiNE model is necessary for investigating the long-term biogeochemical response induced by tropical cyclone.

    摘 要 I Abstract II 致 謝 IV 目 錄 V 表 目 錄 VIII 圖 目 錄 IX 第一章 緒 論 1 1.1、研究區域之大氣與海洋環境 1 1.1.1、南海地區的氣候環境 1 1.1.2、南海地區海洋環流的特徵 2 1.1.3、南海地區生地化的特性 2 1.1.4、颱風對南海的影響 3 1.2、熱帶氣旋對海洋物理與生地化的作用 4 1.3、研究主題及目的 6 第二章 資料來源與模式介紹 9 2.1、資料來源 9 2.1.1、東南亞時間序列研究 9 2.1.2、海表面溫度 10 2.1.3、海表面葉綠素 10 2.1.4、海表面風場 11 2.1.5、熱帶氣旋的最佳路徑 12 2.1.6、再分析的網格資料 12 2.2、模式介紹 15 2.2.1、大氣模式WRF 15 2.2.2、物理海洋模式POM 16 2.2.3、平行化的物理海洋模式mpiPOM與ATOP 18 2.2.4、NPZD生地化模式 19 2.2.5、CoSiNE生地化模式 23 第三章 研究方法 25 3.1、大氣模式WRF模擬玲玲颱風的設定 25 3.2、ATOP-NPZD耦合模式的發展與設定 26 3.2.1、南海海盆的氣候環境特徵 26 3.2.2、理想化模式的設定 34 3.2.3、耦合模式的數值實驗 61 第四章 ATOP-NPZD耦合模式之模擬結果與分析 63 4.1、耦合模式Chl-a模擬結果與SeaWiFS觀測之比較 63 4.2、耦合模式模擬結果的分析 65 4.2.1、一維模式的模擬結果 65 4.2.2、三維與一維模式結果的比較 67 4.2.3、三維模式中物理場的垂直剖面特徵 69 4.3、垂直環流胞與藻類繁生之增強 73 4.4、熱帶氣旋右側的藻類繁生 75 4.5、靜止與移動緩慢的熱帶氣旋數值實驗 81 4.6、網格解析度的敏感度數值實驗 84 4.6.1、水平網格解析度 84 4.6.2、垂直網格解析度 86 第五章 ATOP-Photo-SiNE耦合模式之發展與模擬結果之分析比較 89 5.1、Photo-SiNE生地化模式的發展 89 5.1.1、Photo-SiNE生地化模式之由來 89 5.1.2、Photo-SiNE生地化模式的描述 90 5.2、ATOP-Photo-SiNE耦合模式的發展與設定 99 5.2.1、一維耦合模式在SEATS測站的設定 99 5.2.2、三維耦合模式的數值實驗 102 5.3、一維耦合模式在SEATS測站的模擬結果 102 5.3.1、ATOP-Photo-SiNE的最佳化與CoSINE02模式的結果比較 102 5.3.2、氣候平均值驅動力下的模擬結果 104 5.3.3、熱帶風暴的個案 107 5.4、三維耦合模式的數值實驗結果 109 第六章 討論、結論與展望 112 6.1、討論 112 6.1.1、熱帶氣旋過後產生左右不對稱之機制 112 6.1.2、Photo-SiNE生地化模組之改進 114 6.2、結論 117 6.3、未來展望 119 參 考 文 獻 121 中文參考文獻: 121 英文參考文獻: 121 表 格 131 圖 檔 138 附 錄 215 附錄1、耦合模式補助之文件資料與圖檔 215 附錄2、Photo-SiNE生地化模式補助之圖檔 237 附錄3、博士班資格考口試的研究計劃 256 國際研討會之參與 309 發表之期刊論文(Publication SCI Papers) 317

    中文參考文獻:
    王麗文,2007:南海時間序列站之生地化年間變化研究:利用一維海洋生地化模式之探討,國立中山大學,海洋地質及化學研究所,博士論文。
    陳致穎,2005:桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析,國立中央大學,大氣物理研究所,碩士論文。
    廖啟勳,2005:地形降水對於環境條件與地形特性之敏感度測試:2 維理想地形模擬研究,國立中央大學,水文與海洋科學研究所,碩士論文。
    丁錡樺,2008:呂宋海峽內潮及其強化生地化通量之數值研究,國立中央,水文與海洋科學研究所,碩士論文。
    黃清勇和李志昕,2009:西北向侵台颱風中心路徑打轉之模擬研究,大氣科學,第37 卷,第2期,35-68。
    謝馥揚、王麗文、Chai, F., R、劉康克,2012: Simulation of diatom and non-diatom distributions in the northern South China Sea using the Photo-CoSiNE model,2012 海洋年會,海報展示。

    英文參考文獻:
    Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos (2011), A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications , Bulletin of the American Meteorological Society, 92(2), 157-+, doi:10.1175/2010bams2946.1.
    Babin, S. M., J. A. Carton, T. D. Dickey, and J. D. Wiggert (2004), Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert, Journal of Geophysical Research-Oceans, 109(C3), doi:10.1029/2003jc001938.
    Bannister, T. T., (1974), Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnology and Oceanography, 9, 1-12.
    Blumberg, A. F. and G. F. Mellor, (1987), “A description of a three dimensional coastal ocean circulation model”, in Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, Vol. 4, pp. 1-16, AGU.
    Brown, R. A., and L. X. Zeng (2001), Comparison of planetary boundary layer model winds with dropsonde observations in tropical cyclones, Journal of Applied Meteorology, 40(10), 1718-1723, doi:10.1175/1520-0450(2001)040<1718:copblm>2.0.co;2.
    Cao, Y., R. G. Fovell, and K. L. Corbosiero (2011), Tropical Cyclone Track and Structure Sensitivity to Initialization in Idealized Simulations: A Preliminary Study, Terrestrial Atmospheric and Oceanic Sciences, 22(6), 559-578, doi:10.3319/tao.2011.05.12.01(tm).
    Chai, F., R. C. Dugdale, T. H. Peng, F. P. Wilkerson, and R. T. Barber (2002), One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle, Deep-Sea Research Part II-Topical Studies in Oceanography, 49(13-14), 2713-2745, doi:10.1016/s0967-0645(02)00055-3.
    Chai, F., Liu, G., Xue, H., Shi, L., Chao, Y., Tseng, C.-M., Chou, W.-C., Liu, K.-K. (2009), Seasonal and interannual variability of carbon cycle in South China Sea: a three dimensional physical-biogeochemical modeling study. J. Oceanogr. 65, 703-720.
    Chang, C. W. J., H. H. Hsu, C. R. Wu, and W. J. Sheu (2008), Interannual mode of sea level in the South China Sea and the roles of El Nino and El Nino Modoki, Geophysical Research Letters, 35(3), doi:10.1029/2007gl032562.
    Chang, Y. L., and L. Y. Oey (2013a), Coupled Response of the Trade Wind, SST Gradient, and SST in the Caribbean Sea, and the Potential Impact on Loop Current's Interannual Variability, Journal of Physical Oceanography, 43(7), 1325-1344, doi:10.1175/jpo-d-12-0183.1.
    Chang, Y. L., and L. Y. Oey (2013b), Loop Current Growth and Eddy Shedding Using Models and Observations: Numerical Process Experiments and Satellite Altimetry Data, Journal of Physical Oceanography, 43(3), 669-689, doi:10.1175/jpo-d-12-0139.1.
    Chang, Y. L., and L. Y. Oey (2014a), Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data, Ocean Dynamics, 64(2), 259-271, doi:10.1007/s10236-013-0680-7.
    Chang, Y. L., and L. Y. Oey (2014b), Instability of the North Pacific subtropical countercurrent (vol 44, pg 818, 2014), Journal of Physical Oceanography, 44(8), 2248-2248, doi:10.1175/jpo-d-14-0090.1.
    Chao, S. Y., P. T. Shaw, and S. Y. Wu (1996a), Deep water ventilation in the South China Sea, Deep-Sea Research Part I-Oceanographic Research Papers, 43(4), 445-466, doi:10.1016/0967-0637(96)00025-8.
    Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz (1998), Geographical variability of the first baroclinic Rossby radius of deformation, Journal of Physical Oceanography, 28(3), 433-460, doi:10.1175/1520-0485(1998)028<0433:gvotfb>2.0.co;2.
    Chen, Y. F. L. (2005), Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea, Deep-Sea Research Part I-Oceanographic Research Papers, 52(2), 319-340, doi:10.1016/j.dsr.2004.11.001.
    Chiang, T. L., C. R. Wu, and L. Y. Oey (2011), Typhoon Kai-Tak: An Ocean's Perfect Storm, Journal of Physical Oceanography, 41(1), 221-233, doi:10.1175/2010jpo4518.1.
    Dash, P., et al. (2012), Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons-Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM), Deep-Sea Research Part II-Topical Studies in Oceanography, 77-80, 31-43, doi:10.1016/j.dsr2.2012.04.002.
    Depperman, Rev C.E., (1947), Notes on the origin and structures of Philippine typhoons. Bulletin of the American Meteorological Scociety, 28, 399-404.
    Doney, S. C., D. M. Glover, and R. G. Najjar, (1996), A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Research, 43, 591-624.
    Emanuel, K.A., (1994), Atmospheric Convection. Oxford University Press, New York, 580 pp.
    Ezer, T., and L. Y. Oey (2013), On the dynamics of strait flows: an ocean model study of the Aleutian passages and the Bering Strait, Ocean Dynamics, 63(2-3), 243-263, doi:10.1007/s10236-012-0589-6.
    Furuya, K. (1990), Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: Vertical profiles of phytoplankton biomass and its relationship with chlorophyll a and particulate organic carbon, Marine Biology, 107(3), 529-539, doi:10.1007/bf01313438.
    Geisler, J.E., (1970), Linear theory of the response of a two-layer ocean to a moving hurricane. Geophysics and Fluid Dynamics, 1, 249–272.
    Gill, A.E., (1982), Atmosphere-Ocean Dynamics, Academic Press, New York,662 pp.
    Gnanadesikan, A., and W. G. Anderson (2009), Ocean Water Clarity and the Ocean General Circulation in a Coupled Climate Model, Journal of Physical Oceanography, 39(2), 314-332, doi:10.1175/2008jpo3935.1.
    Gnanadesikan, A., K. Emanuel, G. A. Vecchi, W. G. Anderson, and R. Hallberg (2010), How ocean color can steer Pacific tropical cyclones, Geophysical Research Letters, 37, doi:10.1029/2010gl044514.
    Haine, T. W. N., and J. Marshall (1998), Gravitational, symmetric, and baroclinic instability of the ocean mixed layer, Journal of Physical Oceanography, 28(4), 634-658, doi:10.1175/1520-0485(1998)028<0634:gsabio>2.0.co;2.
    Hanshaw, M. N., M. S. Lozier, and J. B. Palter (2008), Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic, Geophysical Research Letters, 35(1), doi:10.1029/2007gl031862.
    Holland, G. J. (1980), An analytic model of the wind and pressure profiles in hurricanes. Monthly weather review, 108(8), 1212-1218.
    Huisman, J., P. van Oostveen, and F. J. Weissing (1999), Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms, Limnology and Oceanography, 44(7), 1781-1787.
    Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter (2002), NCEP-DOE AMIP-II reanalysis (R-2), Bulletin of the American Meteorological Society, 83(11), 1631-1643, doi:10.1175/bams-83-11-1631.
    Karl, D., R. Letelier, L. Tupas, J. Dore, J. Christian, and D. Hebel (1997), The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean, Nature, 388 , 533–538
    Kunze, E. (1985), Near-inertial wave propagation in geostrophic shear, Journal of Physical Oceanography, 15, 544– 565.
    Large, W.G., Pond, S., (1981), Open ocean flux measurements in moderate to strong winds. Journal of Physics and Oceanography 11, 324–336.
    Lighthill, M. J., (1978), Waves in Fluids. Cambridge University Press, 520 pp.
    Lin, I-I (2012), Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean, Journal of Geophysical Research-Oceans, 117, doi:10.1029/2011jc007626.
    Lin, I-I., W. T. Liu, C. C. Wu, G. T. F. Wong, C. M. Hu, Z. Q. Chen, W. D. Liang, Y. Yang, and K. K. Liu (2003), New evidence for enhanced ocean primary production triggered by tropical cyclone, Geophysical Research Letters, 30(13), doi:10.1029/2003gl017141.
    Liu, K. K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen, and T. Y. Tang (2002), Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study, Deep-Sea Research Part I-Oceanographic Research Papers, 49(8), 1387-1412, doi:10.1016/s0967-0637(02)00035-3.
    Liu, K. K., Y. J. Chen, C. M. Tseng, Lin, II, H. B. Liu, and A. Snidvongs (2007), The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observations and numerical investigations, Deep-Sea Research Part II-Topical Studies in Oceanography, 54(14-15), 1546-1574, doi:10.1016/j.dsr2.2007.05.009.
    Liu, G., Chai, F. (2009), Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical-biogeochemical model study. ICES JOURNAL OF MARINE SCIENCE, 66(2), 420-431. DOI: 10.1093/icesjms/fsn219
    Liu, K.-K., Tseng, C.-M., Yeh, T.-Y., and Wang, L.-W. (2010), Elevated phytoplankton biomass in marginal seas in the low latitude ocean: A case study of the South China Sea. Advances in Geosciences Vol. 18, Ocean Science, pp. 1-17.
    Liu, K. K., L. W. Wang, M. Dai, C. M. Tseng, Y. Yang, C. H. Sui, L. Oey, K. Y. Tseng, and S. M. Huang (2013), Inter-annual variation of chlorophyll in the northern South China Sea observed at the SEATS Station and its asymmetric responses to climate oscillation, Biogeosciences, 10(11), 7449-7462, doi:10.5194/bg-10-7449-2013.
    Liu, X. M., M. H. Wang, and W. Shi (2009), A study of a Hurricane Katrina-induced phytoplankton bloom using satellite observations and model simulations, Journal of Geophysical Research-Oceans, 114, doi:10.1029/2008jc004934.
    Lukas, R., Lindstrom, E., (1991), The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research Supplement, 96, 3343–3357
    Madsen, O. S. (1977), A realistic model of the wind-induced Ekman boundary layer. Journal of Physical Oceanography,7, 248–255.
    Martin, M., et al. (2012), Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE), Deep-Sea Research Part II-Topical Studies in Oceanography, 77-80, 21-30, doi:10.1016/j.dsr2.2012.04.013.
    Mellor, G., and A. Blumberg (2004), Wave breaking and ocean surface layer thermal response, Journal of Physical Oceanography, 34(3), 693-698, doi:10.1175/2517.1.
    Michalakes, J. et al (2001), Development of a next generation regional weather research and forecast model. In Developments in Teracomputing: Proc Ninth ECMWF Workshop on the use of high performance computing in meteorology (Vol. 1, pp. 269-276). World Scientific.
    Mooers, C. N. K. (1975), Several effects of a baroclinic current on the cross-stream propagation of inertial-internal waves, Geophysics and Fluid Dynamics, 6, 245– 275.
    Oey, L., Y. L. Chang, Y. C. Lin, M. C. Chang, F. H. Xu, and H. F. Lu (2013a), ATOP - The Advanced Taiwan Ocean Prediction System Based on the mpiPOM. Part 1: Model Descriptions, Analyses and Results, Terrestrial Atmospheric and Oceanic Sciences, 24(1), 137-158, doi:10.3319/TAO.2012.09.12.01(Oc).
    Oey, L. Y., M. C. Chang, Y. L. Chang, Y. C. Lin, and F. H. Xu (2013b), Decadal warming of coastal China Seas and coupling with winter monsoon and currents, Geophysical Research Letters, 40(23), 6288-6292, doi:10.1002/2013gl058202.
    Oey, L. Y., Y. L. Chang, Y. C. Lin, M. C. Chang, S. Varlamov, and Y. Miyazawa (2014), Cross Flows in the Taiwan Strait in Winter*, Journal of Physical Oceanography, 44(3), 801-817, doi:10.1175/jpo-d-13-0128.1.
    Oey, L. Y., and P. Chen (1992), A model simulation of circulation in the northeast Atlantic shelves and seas , Journal of Geophysical Research-Oceans, 97(C12), 20087-20115, doi:10.1029/92jc01990.
    Oey, L. Y., T. Ezer, D. P. Wang, S. J. Fan, and X. Q. Yin (2006), Loop Current warming by Hurricane Wilma, Geophysical Research Letters, 33(8), doi:10.1029/2006gl025873.
    Oey, L. Y., T. Ezer, D. P. Wang, X. Q. Yin, and S. J. Fan (2007), Hurricane-induced motions and interaction with ocean currents, Continental Shelf Research, 27(9), 1249-1263, doi:10.1016/j.csr.2007.01.008.
    Oey, L. Y., M. Inoue, R. Lai, X. H. Lin, S. E. Welsh, and L. J. Rouse (2008), Stalling of near-inertial waves in a cyclone, Geophysical Research Letters, 35(12), doi:10.1029/2008gl034273.
    Oey, L. Y., R. Chang, S. M. Huang, Y. C. Lin, M. A Lee (2015), The influence of shelf-sea fronts on winter monsoon over East China Sea. Climate Dynamics, DOI 10.1007/s00382-014-2455-3.
    Pai, S. C., Yang, C. C., and Riley, J. P.(1990), Formation kinetics of the pink azo dye in the determination of nitrite in natural-waters, Anal. Chim. Acta, 232, 345–349.
    Pedlosky. J., (1979), Geophysical fluid dynamics, Springer-Verlag, New York, 624pp.
    Platt, T., and Sathyendranath, S., (1988), Oceanic primary production: Estimation by remote sensing at local and regional scales. Science , vol. 241, pp. 1613–1620.
    Powell, M. D., P. J. Vickery, and T. A. Reinhold (2003), Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422(6929), 279-283, doi:10.1038/nature01481.
    Price James F., (1981), Upper Ocean Response to a Hurricane. Journal of Physical Oceanography., 11, 153–175.
    Price, James F., (1983), Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. Journal of Physical Oceanography, 13(6), 949-965.
    Price, J. F., R. A. Weller, and R. Pinkel, (1986), Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophysical Research, 91,8411~8427.
    Price, J. F., T. B. Sanford, and G. Z. Forristall (1994), Forced stage response to a moving hurricane, Journal of Physical Oceanography, 24(2), 233-260, doi:10.1175/1520-0485(1994)024<0233:fsrtam>2.0.co;2.
    Richardson, A. J., N. F. Silulwane, B. A. Mitchell-Innes, and F. A. Shillington (2003), A dynamic quantitative approach for predicting the shape of phytoplankton profiles in the ocean, Progress in Oceanography, 59(2-3), 301-319, doi:10.1016/j.pocean.2003.07.003.
    Salby, M. L. , (1996),Fundamentals of Atmospheric Physics. Academic Press, San Diego, 627pp.
    Sathyendranath, S., A. Longhurst, C. M. Caverhill, and T. Platt (1995), Regionally and seasonally differentiated primary production in the North Atlantic, Deep-Sea Research Part I-Oceanographic Research Papers, 42(10), 1773-1802, doi:10.1016/0967-0637(95)00059-f.
    Schloemer, R.W., (1954), Analysis and synthesis of hurricane wind patterns over Lake Okechobee. Florida. Hydromet. Rep., 31, Dept. of Commerce, Washington, DC, 49pp.
    Shang, S. L., L. Li, F. Q. Sun, J. Y. Wu, C. M. Hu, D. W. Chen, X. R. Ning, Y. Qiu, C. Y. Zhang, and S. P. Shang (2008), Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001, Geophysical Research Letters, 35(10), doi:10.1029/2008gl033502.
    Shaw, P. T., and S. Y. Chao (1994), Surface circulation in the South China Sea, Deep-Sea Research Part I-Oceanographic Research Papers, 41(11-12), 1663-1683, doi:10.1016/0967-0637(94)90067-1.
    Shaw, P. T., S. Y. Chao, K. K. Liu, S. C. Pai, and C. T. Liu (1996), Winter upwelling off Luzon in the northeastern South China Sea, Journal of Geophysical Research-Oceans, 101(C7), 16435-16448, doi:10.1029/96jc01064.
    Shay, L.K. and R. Elsberry (1987), Near-inertial response to H. Frederic. Journal of Physical Oceanography , 17: 1249-1269.441
    Shea, D.J. and W.M. Gray, (1973), The hurricanes's inner core region: Symmetric and asymmetric structure. Journal of the Atmospheric Sciences, 30, 1544-1564.
    Shi, W., and M. Wang (2007), Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico, Geophysical Research Letters, 34(11), doi:10.1029/2007gl029724.
    Shibano, R., Y. Yamanaka, N. Okada, T. Chuda, S. Suzuki, H. Niino, and M. Toratani (2011), Responses of marine ecosystem to typhoon passages in the western subtropical North Pacific, Geophysical Research Letters, 38, doi:10.1029/2011gl048717.
    Shigesada, N. and A. Okubo (1981), Analysis of self-shading on algal distribution in natural waters. Journal of Mathematical Biology. 12: 311-326.447
    Son, S. H., T. Platt, H. Bouman, D. K. Lee, and S. Sathyendranath (2006), Satellite observation of chlorophyll and nutrients increase induced by Typhoon Megi in the Japan/East Sea, Geophysical Research Letters, 33(5), doi:10.1029/2005gl025065.
    Strickland, J. D. H., and Parsons, T. R.(1984), A practical handbook of seawater analysis, 3rd Edn., Bulletin of Fisheries Research Board, Canada, Ottawa.
    Sun, J. R., L. Y. Oey, R. Chang, F. H. Xu, and S. M. Huang (2015), Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea, Ocean Dynamics, 65(5), 735-749, doi:10.1007/s10236-015-0823-0.
    Sun, Z. B., L. Y. Oey, and Y. H. Zhou (2013), Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico, Frontiers of Earth Science, 7(3), 271-281, doi:10.1007/s11707-013-0377-8.
    Suzuki, S., H. Niino, and R. Kimura (2011), The mechanism of upper-oceanic vertical motions forced by a moving typhoon, Fluid Dynamics Research, 43(2), doi:10.1088/0169-5983/43/2/025504.
    Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans. Prentice Hall, New York, 1087pp.
    Sverdrup, H. U. (1953), On conditions for the vernal blooming of phytoplankton. J. Cons. erm. Int. Explor. Mer 18: 287–295.
    Taylor, J. R., and R. Ferrari (2011a), Ocean fronts trigger high latitude phytoplankton blooms, Geophysical Research Letters, 38, doi:10.1029/2011gl049312.
    Taylor, J. R., and R. Ferrari (2011b), Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms, Limnology and Oceanography, 56(6), 2293-2307, doi:10.4319/lo.2011.56.6.2293.
    Thomas, L. N. (2005), Destruction of potential vorticity by winds, Journal of Physical Oceanography, 35(12), 2457-2466, doi:10.1175/jpo2830.1.
    Tseng, C. M., G. T. F. Wong, Lin, II, C. R. Wu, and K. K. Liu (2005), A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea, Geophysical Research Letters, 32(8), doi:10.1029/2004gl022111.
    Wang, B., F. Huang, Z. W. Wu, J. Yang, X. H. Fu, and K. Kikuchi (2009), Multi-scale climate variability of the South China Sea monsoon: A review, Dynamics of Atmospheres and Oceans, 47(1-3), 15-37, doi:10.1016/j.dynatmoce.2008.09.004.
    Wang, B., J. Yang, and T. J. Zhou (2008), Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s, Journal of Climate, 21(8), 1771-1789, doi:10.1175/2007jcli1981.1.
    Wang, D. P., and L. Y. Oey (2008), Hindcast of waves and currents in Hurricane Katrina, Bulletin of the American Meteorological Society, 89(4), 487-+, doi:10.1175/bams-89-4-487.
    Wang, J., and L. Y. Oey (2014), Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat, Geophysical Research Letters, 41(23), 8538-8546, doi:10.1002/2014gl062118.
    Wong, G. T. F., T. L. Ku, M. Mulholland, C. M. Tseng, and D. P. Wang (2007), The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea - An overview, Deep-Sea Research Part II-Topical Studies in Oceanography, 54(14-15), 1434-1447, doi:10.1016/j.dsr2.2007.05.012.
    Xie, S. P., Q. Xie, D. X. Wang, and W. T. Liu (2003), Summer upwelling in the South China Sea and its role in regional climate variations, Journal of Geophysical Research-Oceans, 108(C8), doi:10.1029/2003jc001867.
    Xu, F. H., Y. L. Chang, L. Y. Oey, and P. Hamilton (2013a), Loop Current Growth and Eddy Shedding Using Models and Observations: Analyses of the July 2011 Eddy-Shedding Event, Journal of Physical Oceanography, 43(5), 1015-1027, doi:10.1175/jpo-d-12-0138.1.
    Xu, F. H., L. Y. Oey, Y. Miyazawa, and P. Hamilton (2013b), Hindcasts and forecasts of Loop Current and eddies in the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation schemes, Ocean Modelling, 69, 22-38, doi:10.1016/j.ocemod.2013.05.002.
    Xu, F. H., and L. Y. Oey (2014), State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea, Ocean Dynamics, 64(6), 905-923, doi:10.1007/s10236-014-0720-y.
    Xu, S., Huang, X., Zhang, Y., Fu, H., Oey, L.-Y., Xu, F., and Yang, G., (2014), gpuPOM: a GPU-based Princeton Ocean Model, Geoscientific Model Development., Discuss., 7, 7651-7691, doi:10.5194/gmdd-7-7651-2014, 2014.
    Yan, X. H., Ho, C. R., Zheng, Q., and Klemas, V. (1992), Temperature and size variabilities of the western PacificWarm Pool, Science, 258, 1643–1645.
    Zhao, H., D. L. Tang, and Y. Q. Wang (2008), Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea, Marine Ecology Progress Series, 365, 57-65, doi:10.3354/meps0741838.
    Zheng, Z. W., C. R. Ho, Q. A. Zheng, N. J. Kuo, and Y. T. Lo (2010a), Satellite observation and model simulation of upper ocean biophysical response to Super Typhoon Nakri, Continental Shelf Research, 30(13), 1450-1457, doi:10.1016/j.csr.2010.05.005.
    Zheng, Z. W., C. R. Ho, Q. A. Zheng, Y. T. Lo, N. J. Kuo, and G. Gopalakrishnan (2010b), Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific, Journal of Geophysical Research-Oceans, 115, doi:10.1029/2009jc005562.

    QR CODE
    :::