| 研究生: |
希亭納 Sittinat Denduonghatai |
|---|---|
| 論文名稱: |
適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試 Design, analysis, and tests of locked hinges for two-stage deployable solar panels onboard small satellites |
| 指導教授: |
張起維
Loren C. Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 可展開的機構 、適用於小型衛星的鎖定鉸鏈 、兩階段可展開太陽能板 |
| 外文關鍵詞: | Deployable mechanisms in space, locked hinges for small satellite, two-stage deployable solar panels |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小型衛星的能力在過去十年顯著的提高。中央大學所主導的 12U CubeSat SCIntillation and IONosphere-eXtended (SCION-X),主要由四個科學酬載組成,電離層探測器 (CIP), Cion-R,Hyper-SCAN 和 SEUV(太陽紫外線輻射感測儀)。Cubesat的主要結構受限內部有限空間以及因為酬載和次系統所需的能量較大,進而導致的在計算能量預算時會不足,這個問題激發了本篇論文的研究,使用多次展開太陽能電池板的這個想法來增加能量預算,並且對在IDEASSat上由於製造方法而使太陽能板彎曲的問題提出解決方案。 這項工作的重點是解決太陽能電池所產生得能量和機械製造問題,因為團隊目前缺乏該領域方面的知識,此研究可以為團隊墊下研究可展開機制方面的基礎,使用多次可展開太陽能板以增加能量預算,並且這個方法對衛星內部可用空間的影響最小。此研究需要了解台陽能板之間互相連接的鎖定鉸鏈,以確保每個面板之間的剛度 初步研究表明,兩階段可展開太陽能板的概念可以適用於小型衛星, 但它需要兩個太陽能板之間的鎖定鉸鏈,以盡可能減少太陽能板展開時所產生的振動和拍動對衛星的影像。由於適用於小型衛星的鎖定鉸鏈由於其設計復雜性而被限制為,根本沒有人使用過,更遑論鉸鏈本身很難塞入小衛星的所要求的尺寸當中。使得這個研究要求似乎很高,但並非不可能。於是本文便開始研究有關適用於 12U CubeSat 的兩階段可展開太陽能板的設計、實驗和初步結構測試 因為如此,本文進行了鎖定鉸鏈的設計、製造和測試,而且在展開中有兩個主要的方法,分別是只需要一個電路和需要兩個獨立的電路去連接電阻燒斷釣魚線,兩種情況在結構整題完成性方面沒有顯著差異,但單一個電阻的展開機構需要的電路設計比兩個獨立電阻來得更簡單,但在有限的時間會產生較高的反作用力給姿態感測控制儀器(ADCS)去反映並且吸收。相反的分開得單獨的電路可以利用不同的鉸鍊上扭簧的彈力係數去安排不同時間,按照順序去展開,以減少 ADCS 所必須吸收的作用力。 經過驗證,兩階段可展開太陽能電的設計可以承受作用在三個軸上的 15g 正弦振動測試 展開測試和分析結果已被本文合併成如何形成最佳彈簧常數。在此研究中發現在底座鉸鍊處裝上0.008829 N-mm/deg的彈簧並且在鎖定鉸鏈處裝上 0.108 N-mm/deg 可以滿足單一電路展開以及兩個分開電路的展開,而不會對底座鉸鏈產生重大影響,並且這可個分案可以增加 ADCS 吸收擾動扭矩的時間
Capabilities of small satellites have increased significantly throughout the past decade. SCIntillation and IONosphere – eXtended (SCION-X), a 12U CubeSat proposed by National Central University. consists of four scientific payloads, Compact Ionospheric Probe (CIP), Cion-R, Hyper-SCAN and SEUV (Solar Extreme UltraViolet Radiation). The spacecraft was limited by space reserved inside and the power margin due to power consumption of payloads and subsystems which inspired this thesis to study the idea of multi-stage deployable solar panels in order to increase the power margin and counter the warping of solar panels which was long suffered since the predecessor of SCION-X, IDEASSat due to manufacturing problems.
The focus of this work was to tackle problems of power margin and mechanical problems of the solar panels and serves as a basis of the study of deployable mechanisms for the team as we currently lack knowledges in this field. Multi-stage deployable solar panels can be used in order to increase power margin and also has minimal impact to the space available inside the spacecraft. This requires knowledge in locking hinges for the hinge connected between panels in order to ensure rigidity between each panels.
Preliminary study shows the concept of two-stage deployable solar panels can be applied to small satellites, but it requires the locking hinge between two solar panels in order to minimize the vibration and flapping mode when the spacecraft performs maneuvers. The locking hinge for small satellites saw limited to no use at all due to complexity and the hinge itself is hard to cram into the size of small satellites. The requirements seemed to be steep but not impossible. This leads to design, experiment and preliminary structural tests of two-stage deployable solar panels applicable for 12U CubeSat.
Hence, the design, fabrication and tests of locked hinges were conducted, and there are two main concepts of deployment which requires one and two separate burn wire resistors respectively. There is no significant difference in terms of structural integrity between two cases but single-action deployment has a simpler circuit with high reaction force in limited time for the altitude determination and control system unit (ADCS) to absorb, while separate circuits can utilize different torsion spring constants for each hinges and each sequence can be separated by a certain period of time to reduce loads that ADCS unit has to absorb.
It was verified that the design of two-stage deployable solar panels can withstand the sine-burst load equivalent of 15g acting on all three axes.
Deployment tests and results from analysis have been combined to form trade studies of the optimal spring constant. It was found the case of 0.008829 N-mm/deg at base hinge and 0.108 N-mm/deg at locked hinges can satisfy both single-action and separate circuits without having penalties of major impact to the base hinge which can increases the time for ADCS unit to absorb disturbance torques.
2216 B/A GRAY 3M Electronic Specialty: Mouser. Mouser Electronics. (n.d.). https://www.mouser.tw/ProductDetail/3M-Electronic-Specialty/2216-B-A-GRAY?qs=ItEYEd4DnG3o%2FMYmbUiNzA%3D%3D.
Abbasi, V., Azria, B., Tabarah, E., Menon, V., Phillips, E., & Bedirian, M. (2004). Improved 7-DOF Control of ISS Robotic Manipulators. Space OPS 2004 Conference. https://doi.org/10.2514/6.2004-610-407
Average monthly humidity in Boulder (Colorado), United States of America. World Weather & Climate Information. (n.d.). https://weather-and-climate.com/average-monthly-Humidity-perc,boulder-colorado-us,United-States-of-America.
Average monthly humidity in Taipei (Taipei municipality), Taiwan. World Weather & Climate Information. (n.d.). https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,taipei-tw,Taiwan
B. Perry, (personal communication, January 14, 2020)
Blue Canyon Technologies. (n.d.). https://bluecanyontech.com/components.
Boyajian, S., B. Schwab, A. Chandran, A. Verma, Priyadarshan H., A. Kumar, KVLN Malikarjun, Y. Duann, L. Chang, C.-K. Chao, R. Tsai-Lin, T.-Y. Tai, W.-H. Luo, C.-T. Liao, C.-J. Chung, and R. Duann (2019), INSPIRESat-1: An Ionosphere and Solar X-ray Observing Microsat, Proceedings of the AIAA/USU Conference on Small Satellites, Next On the Pad, SSC19-V-06, https://digitalcommons.usu.edu/smallsat/2019/all2019/93/.
CalPoly. (2020). CubeSat design Specification Rev.14. California.
Canisterized Satellite Dispenser. Planetary Systems Corp. (2021, March 16). https://www.planetarysystemscorp.com/product/canisterized-satellite-dispenser/.
CubeSat Design Specification - SpaceQ. (n.d.). https://www.spaceq.ca/wp-content/uploads/2017/07/cds_rev13_final2.pdf.
Duann, Y., L.C. Chang, C.-K. Chao, Y.-C. Chiu, R. Tsai-Lin, T.-Y. Tai, W.-H. Luo, C.-T. Liao, H.-T. Liu, C.-J. Chung, R. Duann, C.-L. Kuo, J.-Y. Liu, Z.-M. Yang, G.F. Gacal, A. Chandran, Priyardarshan H., A. Verma, T.-W. Fang, and Sarthak S. (2020), IDEASSat: A 3U CubeSat Mission for Ionospheric Science, Adv. Space Res., 66, https://doi.org/10.1016/j.asr.2020.01.012.
E. Luraschi, (personal communication, January 13, 2020)
ISIPOD CubeSat Deployer. ISISPACE. (2020, December 29). https://www.isispace.nl/product/isipod-cubesat-deployer/.
Jeong, J. W., Yoo, Y. I., Shin, D. K., Lim, J. H., Kim, K. W., & Lee, J. J. (2014). A novel tape spring hinge mechanism for quasi-static deployment of a satellite deployable using shape memory alloy. Review of Scientific Instruments, 85(2), 025001. https://doi.org/10.1063/1.4862470
Konecny, G. (2004). Small satellites – A tool for earth observation? XXth ISPRS Congress.
Kulu, E. (n.d.). What is a CubeSat? Nanosats Database. https://www.nanosats.eu/cubesat.
Langer, Martin & Olthoff, Claas & Harder, Jan & Fuchs, Christian & Dziura, Martin & Hoehn, Alexander & Walter, Ulrich. (2015). Results and lessons learned from the CubeSat mission First-MOVE.
Larger, 6U and 12U CubeSats for ISS Deployment. Nanoracks. (2020, May 20). https://nanoracks.com/larger-cubesat-standard-for-iss-deployment/.
Li, D., Harkness, P., & Walkinshaw, T. (2017). Design of a solar panel deployment and tracking system for Pocketqube pico-satellite. 2017 IEEE Aerospace Conference. https://doi.org/10.1109/aero.2017.7943910
Mason, J.P., Baumgart, M., Rogler, B., Downs, C., Williams, M., Woods, T.N., Palo, S., Chamberlin, P.C., Solomon, S., Jones, A., Li, X., Kohnert, R., Caspi, A., (2017) MinXSS-1 CubeSat on-orbit pointing and power performance: the first flight of the blue canyon technologies XACT 3-axis attitude determination and control system. J. Small Satellites 6 (3), 651–662.
Metals Handbook, Vol.2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International 10th Ed. 1990.
Merstallinger, A., & Sales, M. (2010). Cold welding due to impact and fretting under vacuum.: Considering scaling for applications in space mechanisms. Mechanical Properties of Complex Intermetallics, 191–248. https://doi.org/10.1142/9789814322171_0006
M. Tolstoj, (personal communication, January 23, 2020)
Music wire steel. (n.d.) https://www.spacematdb.com/spacemat/manudatasheets/springs%20music%20wire.pdf
QuadPack CubeSat deployer. ISISPACE. (2021, April 30). https://www.isispace.nl/product/quadpack-cubesat-deployer/.
Solís-Santomé, A., Urriolagoitia-Sosa, G., Romero-Ángeles, B., Torres-San Miguel, C. R., Hernández-Gómez, J. J., Medina-Sánchez, I., Couder-Castañeda, C., Grageda-Arellano, J. I., & Urriolagoitia-Calderón, G. (2019). Conceptual design and finite element method validation of a new type of self-locking hinge for deployable CubeSat solar panels. Advances in Mechanical Engineering, 11(1), 168781401882311. https://doi.org/10.1177/1687814018823116
The Miniature X-ray Solar Spectrometer (MinXSS). (n.d.). https://lasp.colorado.edu/home/minxss/
Thum, A. H. (n.d.). Nichrome Burn Wire Release Mechanism for CubeSats. NTIS. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N20130008857.xhtml.
Uygur, A. B. (2015). Quasi-static structural test of satellites. 7th International Conference on Recent Advances in Space Technologies.