| 研究生: |
陳興華 Hsin-hwa Chen |
|---|---|
| 論文名稱: |
高強度鋁合金晶粒細化與成型特性研究 Study on The Grain Refining and Superplasticity Forming Behavior of The High Strength Aluminum Alloys |
| 指導教授: |
李天錫
Tien-Hsi Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 318 |
| 中文關鍵詞: | 7039 鋁合金、7049 鋁合金、5083 鋁合金、超塑性、晶粒細化、等通道彎角擠製、超塑性氣壓快速成型、空孔率 |
| 外文關鍵詞: | cavity fraction, gas forming, superplasticity, 5083 Al alloy, grain refining, Equal channel angular extrusion, Sc, 7049 Al alloy, 7039 Al alloy |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
金屬超塑性依據產生的機理可以分成組織超塑性、相變超塑性和應力誘發超塑性三類。而鋁合金超塑性則屬於細晶超塑性,其材料的超塑性質受晶粒大小所影響,相對的也主導著其高溫潛變特性。因此如何細化鋁合金晶粒可視為鋁合金快速成形技術發展之重要條件。本研究為改善高強度鋁合金之性質以擴展其應用性,分別針對析出硬化型之高強度鋁合金7039、7049加鈧研究其對晶粒細化與高溫拉伸潛變特性,以及非析出硬化型鋁合金5083經等通道彎角擠製與氣壓快速成型之超塑性成型特性加以探討。
研究結果顯示:AA7039在添加微量Sc後,常溫抗拉強度無論有無經過退火皆有400MPa以上的表現,而AA7049在添加Sc、Zr和Cu後,其抗拉強度為522MPa,且兩者皆在滾軋率R=20%有較強之抗拉強度。而120、150℃溫度下之人工時效T6處理之拉伸試驗結果則顯示:AA7049加Sc、Zr和Cu之抗拉強度高達660MPa比AA7039加Sc之抗拉強度466MPa抗拉強度提升許多,主要是其結構上含有散佈強化和析出物較多。在高溫拉伸部分,AA7039加Sc在溫度400℃以應變率1×10-2下,伸長量124%為最佳效果。AA7049加Sc、Zr和Cu在溫度400℃以應變率5×10-3,伸長量可達244%。主因在於含有較多晶粒細化劑Sc、Cu和Zr。並且由金相圖中可明顯觀察到AA7049加Sc、Zr和Cu經過500℃、1hr退火,晶粒有明顯的細化現象且有消除擠製流線的作用。
5083 鋁合金經過90°-200℃-Bc8條件之等通道彎角擠製後,能產生小於1μm 之等軸次晶粒結構,Fe 含量較低的5083 鋁合金並且在250℃及450℃的溫度下,使用1×10-3 s-1的應變速率,分別得到266.6%及350%的伸長量,同時具有低溫及高溫的超塑性。ECAE 製程參數的影響,除了使用較小的通道夾角,可以施加較大剪應變於材料之外,不同的擠製方位、擠製溫度及擠製道次,也會導致微結構產生不同的晶粒形狀、晶界性質等,這些因素主導著低溫超塑性期間,動態再結晶的出現與否。高溫超塑性期間,Mn、Fe、Si 元素組成的第二相顆粒,扮演非常重要的角色,Fe 含量較少的第二批5083 鋁合金,在450℃的拉伸測試中,可以獲得較高的m 值與最佳的伸長量。
在研究快速超塑性製程之成型機制方面:5083 鋁鎂合金鈑片利用雙面塗有T50-66 潤滑劑的一個杯狀盒子模具ψ40mmx20mm 深,在溫度500℃做階梯式增壓吹氣成型的完全成形時間為70 sec,得到令人意外的結果,成形時間遠比傳統氣壓成型的操作成形時間少了幾十倍之多。由成型溫度400℃、450℃、500℃的試驗結果以500℃之成形性最佳。成形過程中的應變率分佈,溫度400℃、450 ℃與500℃在成形的各個階段,其中觸底階段高達10-1 s-1,比傳統的10-3 s-1快了非常多。空孔的分佈情形是以單位面積的空孔率做比較,400℃空孔嚴重,其單位面積的空孔率為11.69%,而450 ℃與500℃的空孔明顯減少許多,450 ℃的單位面積的空孔率為2.57%,500℃的單位面積的空孔率為3.54%。依綜合成形時間、成形過程中的應變率分佈、厚度分佈均勻度、空孔分佈情形等結果的比較我們可以明確的得到,500℃的操作溫度,為最佳的操作條件。
Abstract
Aluminum alloys have been generally used because of its opposite strength, light weight, high heat and electric conductivity, superior ductility and easily tomanufacture. One’s early years, Soviet bring up that aluminum alloys have perfect mechanical properties when adding scandium into alloys. This approach has more and more emphasis recently and is used for the frame of bicycles, the head of golf club and so on.
The experiment adopts A7039 alloy and A7049 alloy which are all added about 0.05wt.% and 0.106wt.% scandium respectively.Metal plate is processed by rolling and metal plate changes the rolling reduction ratio and changes the temperature of elongation. By way of changing these parameters, we aspect this method can promote the strength of materials and improve the breadth of 7000 series of aluminum alloys which are added scandium.
The experiment result exhibit that the tensile strength of A7039 alloy and A7049 alloy can promote to 466 MPa and 660 MPa , and elongation can promote to 124% and 244% , at 400℃ by strain rate 1×10-2 and 5×10-3 respectively.We can know that all of the mechanical properties are obvious be promoted when the temperature is 400℃. When R=20%, the maximum yield strength of room temperature is about 400MPa and 522 MPa respectively.
Although the regular AA5083 Al alloy has long been used, its superplastic version has not been intensively or thoroughly studied such that some aspects regarding superplastic AA5083 are unclear. For example, the influence of Fe content on superplastic elongation is almost neglected, and this topic will be explored. Besides, this paper presents one of the minority studies on applying the equal channel angular extrusion (ECAE) to this alloy. It provides a comprehensive knowledge of processing and thus resulting mechanical properties as well as microstructures, which are probably unavailable elsewhere.This paper represents a large scale of experimental work in using the ECAE process on two groups of the AA 5083. There had been high expectation on the ECAE in greatly refining grain size in order to result exceptional superplasticity as most references indicated. However, our large amount of processing and subsequent tensile testing at various conditions did not fully confirm this common impression. The best superplasticity obtained is 350%, which is no superior to the commercially available rolling-type AA5083.
Effect of lubrication on deformation behavior of a superplastic material has been given little attention, although it is important for industrial application. In this paper, a superplastic 5083 Al alloy under bi-axial deformation was investigated by deforming the sheet into a cylindrical die cavity with and without lubrication. Several interrupted tests were performed to bulge the sheets to various depths for two different strain rates, the formed parts were then utilized to evaluate the effect of lubrication on metal flow, thickness distribution, and cavitation. It was found that reducing the interfacial friction by use of a lubricant improved the metal flow after the deformed sheet had made contact with the bottom surface of die. Changes of the metal flow during forming not only developed a better thickness distribution of the formed part, but also reduced cavitation levels.
Reference
1. Hatch, J. E., Ed., “Aluminum properties and physical metallurgy”,American Society for Materials, Materials Park, Ohio, 1984.
2. http://www.audi.cz/technika/tec_alu.php
3.Toshiji Mukai, Masataka kawazoe, and Kenji Higashi “ Dynamic mechanical properties of a near-nano aluminum alloy processed by Equal-Cannel-Angular-Extrusion”
4. 劉文海,”鋁合金車體與底盤之發展動向” ,機械工業雜誌, 2006年6月, pp.75-84.
5. Yu. A. Filatov, V.I. Yelagin, V.V. Zakharov, “New Al-Mg-Sc alloys” Materials Science and Engineering, A280( 2000) pp.97-101.
6. Davydov V. G., Rostova T. D., Zakharov V.V., Filatov Yu. A., Yelagin V. I.: Scientific principles of making an alloying addition of scandium to aluminium alloys, Materials Science and Engineering A280(2000) pp.30–36.
7. Vladivoj Ocenasek, Margarita Slamova “Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, vol 47 ,2001, pp. 157-162.
8. Lawrence S. Kramer, William T. Tack, “Scandium in Aluminum Alloys”, Advanced Materials & Processes, 10 (1997)pp.23-24.
9. I. J. Polmear, “Light Alloys-Metallurgy of the Light Metals 2nd ed.”,Edward Arnold, London, England, 1989, pp.18-62.
10. “Aluminum metals handbook”, Ninth Edition, American Society for Metals, vol.2, 1980, pp.28-43.
11. G. W. Lorimer and R. B. Nicholson, “Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system”, Acta Metallurgica, vol.14, 1966, pp.1009-1013.
12. P. N. T. Unwin, and R. B. Nicholson, “The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys”, Acta Metallurgica, vol.17, 1969, pp.1379-1393.
13. C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The development and application of improved aluminum-lithium alloys”, Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, April, 1983, pp.363-392.
14. R.A.Flinn, P.K.Trojan, “Engineering Materials and Their Application”, Houghton Miffin Co., Boston, 1981.
15. C. E. Deiter, “Mechanical metallurgy”, 3rd ed., McGraw-Hill, 1986, pp.221-227.
16. Thomas H. Courtney, “Mechanical Behavior of Materials”, Second Edition, McGraw-Hill Higher Education, 2000, pp.196-210.
17. L. K. Lamikov and G. V. Samsonov, “Soviet non-ferrous metals res.”, USSR, 1964, pp.9-79.
18. E. A. Marquis and D. N. Seidman, “Nanoscale structure evolution of Al3Sc precipitation in Al(Sc) alloys”, Acta Mater., vol.49, 2001, pp.1909-1919.
19. A. F. Noraman, P. B. Prangnell and R. S. McEwen, “The solidification behavior of dilute aluminum-scandium alloys.”, Acta mater., vol.46, 1998, p.5715-5732.
20. K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. umar and R. N. Ghosh, “Microstructure, tensile strength and wear behaviour of Al-Sc alloy”, Material Science & Engineering, A383, 2004, pp.374-380.
21. D. N. Seilman, E. A. Marquis, and D. C. Dunand, “Precipitation strengthening at ambient and elevated temperature of heat-treatable Al(Sc) alloys”, Acta Materialia, vol.50, 2002, pp.4021-4035.
22. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, “Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures”, Acta Metallurgica, vol.36, 1996, pp.1011-1016.
23. Kyung-Tae Park, Duck-Young Hwang, Young-Kook Lee, Young-Kuk Kim, and Dong Hyuk Shin, “High strain rate superplasticity of submicrometer Grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Material Science & Engineering, A341, 2003, pp.273-281.
24. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al-Mg-Sc alloy”, Scripta Materialia, vol.50, 2004, pp.511-516.
25. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys”, Acta Materialia, vol.50, 2002, pp.553-564.
26. Zhimin Yin, Qinglin Pan, Yonghong Zhang, and Feng Jiang, “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Mg based alloys”, Material Science & Engineering, A280, 2000, pp.151-155.
27. M. A. Munoz-Morris, C. Garcia Oca, G. Gonzalez-Doncel, and D. G. Morris, “Mircostructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing”, Material Science & Engineering, vol.375-377, 2004, pp.853-856.
28. Vladivoj Ocenasek, and Margarita Slamova, “Resistence to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, vol.47, 2001,pp.157-162.
29. Emmanuelle. A. Marquis, and David. N. Seidman, “Microstructure evolution of Al3Sc precipitates by three-dimensional atom-probe microscopy”, Materials science and engineering department, Northwestern University, Evanston, IL, pp.60208-3108, USA.
30. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov, “Russian Metallurgy”, Engl. Transl., vol.1, 1981, pp.115.
31. J. Richert, and M. Richert, “Aluminum”, vol.62, 1986, pp.604.
32. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Scripta Materialia”, vol.36, 1997, pp.681-686.
33. M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi, “Acta Materialia”, vol.47, 1999, pp.2047-2057.
34. W. H. Haung, L. Chang, P. W. Kao and C. P. Chang, “Materials Science and Engineering”, A307, 2001, pp.113-118.
35. V. M. Segal, “USSR Patent”, No.575892, 1977.
36. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Scripta Materialia”, vol.35, 1996, pp.143-146.
37. Y. L. Bai and B. Dodd: Adiabatic Shear Localization Occurrence,
Theories and Applications, Pergamon Press, N. Y. , 1992.
38. M. A. Meyers, V. F. Nesterenko, J. C. LaSalvia and Q. Xue, “Shear
Localization in Dynamic Deformation of Materials: Microstructural
evolution and self-organization,” Mater. Sci. Eng. A317, 2001,
pp. 204-225.
39. H. S. Kim, “Materials Science and Engineering”, A315, 2001, pp.122-128.
40. M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, “The Minerals, Metals & Materials Society”, Warrendale, PA, 2000, pp.125.
41. Furukawa M., Horita Z., Langdon T. G., ”Factors influencing the shearingpatterns in Equal-Channel Angular Pressing”, Materials Science andEngineering A, 332,97-109(2002).
42. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V., ”Bulk nanostructed
materials from severe plastic deformation”, Progress in Materials
science, 45, 108-112(2000).
43. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T. G. Langdon,
“Metall.Trans.”, A29, 1998, pp.2245.
44. Reger Pearce : ” Superplasticity an overview ” , p1-1-1-13.
45. 葉均蔚, “鎂及鋁合金之超塑性成形”,工業材料雜誌, 174 期, 90 年 6 月, pp.102-112.
46. R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Km, “Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet”, Metallurgical and Materials Transactions, 1996, pp.1889.
47. R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Kim, “Superplastic forming characteristics of fine-grained aluminum”, J. Mater. Sci. Eng, 1995, pp.543.
48. “Applications of Scandium In Al-Sc Alloys”, http://www.scandium.org/Sc-Al.html.
49. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 2.
50. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 39.
51. T. Wantanabe, S. Kimura, and S. Karashima, Phil. Mag., A49, (1984) p. 845.
52. Toshiji Mukai, Masataka kawazoe, and Kenji Higashi “ Dynamic
mechanical properties of a near-nano aluminum alloy processed by
Equal-Cannel-Angular-Extrusion”
53. Auto & Light Truck Group (ALTG) .
54. 蔡幸甫,輕金屬產業的發展趨勢,工業材料,166 期,89年10月,pp. 165~168。
55. 蘇聖紋,國立中山大學材料科學研究所碩士論文(1999)。
56. A.K. Vasudevan and R.D. doherty,” Aluminum alloys-contemporary research and applications”, Vol. 31 (1989), pp. 85~94.
57. Y.U. Zhu, T.C. Lowe and T.G. Langdon,”Performance and application of nanostructured materials produced by severe plastic deformation”, Scripta Materialia 51 (2004), pp. 825~830.
58. V.L. Tellkamp and E.J. Lavernia,” Process and Mechanical Properties of Nanocrystalline 5083 Al Alloy”, NanoStructured Materials, Vol. 12 (1999), pp. 249~252.
59. Y. Wu, L.Del Castillo, E.J. Lavernia,” Superplasticity of 5083 alloys produced by spray deposition”, Scripta Materials, Vol. 34, No. 8 (1996), pp.1243 ~1249.
60. K. Zhang, I.V. Alexandrov and K. Lu,” The X-ray study on a nanocrystalline Cu processed by Equal-Channel Angular Extrusion”, Nanostructured Materials, Vol. 9 (1997), pp. 347~350.
61. W.Blum, Q. Zhu, R. Merkel, H.J. McQueen,” Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn”, Materials science & engineering, A205 (1996), pp. 23 ~30.
62. R. Verma, A.K. Ghosh, S. Kim, C. Kim,” Grain refinement and superplasticity in 5083 Al”, Materials Science & Engineering A 191 (1995), pp.143 ~150.
63. R.M. Cleveland, A.K. Ghosh, J.R. Bradley,” Comparison of superplastic behavior in two 5083 Al alloys”, Materials Science & Engineering A 351 (2003), pp. 228 ~236.
64. V. M. Segal, Invention Sertificate of the USSR Patent No. 575892 (1977).
65. V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, Russian Metallurgy, Engl. Transl., Vol. 1 (1981), p 115.
66. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon,” Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials”, Acta Materialia, Vol. 35, No. 4 (1996), pp.143~146.
67. K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon,” Influence of channel angle on the development of ultrafine grains in equal-channel angular extrusion”, Acta Materialia, Vol. 46, No. 5 (1998), pp. 1589~1599.
68. Raghavan Srinivasan, “ Computer simulation of the equal channel angular extrusion process”, Scripta Materialia 44 (2001), pp. 91~96
69. 陳立文,等通道彎角擠製之有限元素分析,中央大學碩士論文(2002)。
70. Y. Wu and I. Baker,” An experimental study of Equal Channel Angular Extrusion”, Scripta Materialia, Vol. 37, No. 4 (1997), pp. 437~442.
71. A. Shan; I.G. Moon, H.S. Ko, J.W. Park,” Direct observation of shear deformation during equal channel angular pressing of pure aluminum”, Scripta Materialia, Vol. 41 (1999), pp.353~357.
72. H. S. Kim, M. H. Seo and S. I. Hong,” Plastic deformation analysis of matels during equal channel angular pressing“, Journal of Materials Processing Technology, 113 (2001), pp. 622~626.
73. Y.L. Yang and Shyong Lee,” Finite element analysis of strain conditions after equal channel angular extrusion”, Journal of Materials Processing Technology, 140 (2003), pp. 583~587.
74. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon,” An investigation of microstructural evolution during equal-channel angular pressing”, Acta Materialia, Vol. 45 (1997), pp. 4733~4741.
75. V.M. Segal,” Materials processing by simple shear”, Materials science & engineering A197 (1995), pp. 157~164.
76. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langod,“ The process of grain refinement in equal-channel angular pressing”, Acta Materialia, Vol. 46 (1998), pp. 3317~3331.
77. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon,” The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering A257 (1998), pp. 328~332.
78. Z. Horita, M. Furukawa, K. Ohisif, M. Nemoto and T. G. Langdon,”
Equal-channel angular pressing for grain refinement of metallic materials”, The Japan Institute of Metals (1999), pp. 301~308.
79. H.J. Cui, R.E. Goforth and K.T. Hartwig,” The three-dimensional simulation of flow pattern in equal-channel angular extrusion”, The member journal of the minerals, metals & materials society, Vol. 50, No. 8 (1998).
80. 孫佩玲,純鋁經大量塑性變形生成細晶粒之研究,中山大學碩士論文(1998)。
81. 王郁雲,變形溫度對等徑轉角擠製純鋁微組織之影響,中山大學碩士論文(2002)。
82. A. Yamashita, D. Yamaguchi, Z. Horita and T. G. Langdon, “ Influence of pressing temperature on microstructural development in equal-channel angular pressing”, Materials Science and Engineering A287 (2000), pp. 100~106.
83. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev and T. G. Langdon,” Influence of pressing speed on microstructural development in equal-channel angular pressing”, Metallurgical and Materials Transactions A, Vol. 30A (1998), pp. 1989~1998.
84. M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon,” A model investigation of the shearing characteristics in equal-channel angular pressing”, Materials Science and Engineering A347 (2003), pp. 223~230.
85. J.R. Bowen, A. Gholinia, S.M. Roberts, P.B. Prangnell,” Analysis of he billet deformation behaviour in equal channel angular extrusion”, Materials Science and Engineering A287 (2000), pp. 87~99.
86. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langod,“ Factors influencing the equilibrium grain size in equal-channel angular pressing: role of Mg additions to Aluminum”, Metallurgical and Materials Transactions A, Vol. 29A (1998), p. 2503.
87. J. Wang, M. Furukawa, Z. Horita and M. Nemoto,” Enhanced grain growth in an Al-Mg alloy with ultrafine grain size”, Materials Science and Engineering A216 (1996), pp. 41~46.
88. A. Gholinia, P.B. Prangnell and M.V. Markushev,” The effect of strain path on the development of deformation structure in severely deformation aluminum alloys processed by ECAE”, Acta Meterialia 48 (2000), pp. 1115~1130.
89. 黃盈源,鋁鎂合金等徑轉角擠製組織與擠製溫度關係之研究,中 山大學碩士論文(1998),P6。
90. 陳奕琦,等徑轉角擠製溫度對鋁鎂合金微結構發展的影響,中山大學碩士論文(2001)。
91. Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon,” Improvement of mechanical properties for Al alloys using equal-channel angular pressing”, Journal of Materials Processing Technology, 117 (2001), pp. 288~292.
92. M. Kawazoe, T. Shibata, T. Mukai and K. Higashi,” Elevated temperature mechanical properties of A 5056 Al-Mg ally processed by equal-channel-angular-extrusion”, Scripta Materialia, Vol. 36, No. 6 (1997), pp. 699~705.
93. M. Mabuchi, H. Iwasaki and K. Higashi,” Microstructure and mechanical properties of 5056 Al alloy processed by equal channel angular extrusion”, NanoStructured Materials, Vol. 8, No. 8 (1997), pp. 1105~1111.
94. M.V. Markushev, C.C. Bampton, M.Yu. Murashkin and D.A. Hardwick,” Structure and properties of ultra-fine grained aluminum alloys produced by severe plastic deformation”, Materials Science and Engineering A234-236 (1997), pp. 927~931.
95. M.V. Markushev, M.Yu. Murashkin, P.B. Prangnell, A. Gholinia and O.A. Maiorova,” Structure and Mechanical behaviour of an Al-Mg alloy after equal channel extrusion”, NanoStructureed Materials, Vol. 12 (1999), pp. 839~842.
96. T. Mukai, M. Kawazoe and K. Higashi,” Strain-rate dependence of mechanical properties in AA5056 Al-Mg alloy processed by equal -channel-angular-extrusion”, Materials Science and Engineering A247 (1998), pp. 270~274.
97. T. Mukai, M. Kawazoe and K. Higashi,” Dynamic mechanical properties of a near-nano aluminum alloy processed by equal -channel-angular-extrusion”, NanoStructured Materials, Vol. 10,
No. 5 (1998), pp. 755~765.
98. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), p. 5.
99. Roger Pearce,“ Superplasticity- an overview ”, NATO/AGARD Lecture Series on Superplasticity, 09/ 1987, p. 1.
100. S.N. Patankar and T.M. Jen,” Strain Rate Insensitive Plasticity in Aluminum Alloy 5083”, Scripta Mater. 38 (1998), pp. 1255~1261.
101. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), pp. 159~164.
102. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), pp. 60~71.
103. S. Komura, M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon,” Optimizing the procedure of equal-channel angular pressing for maximum superplasticity”, Matterials Science and Engineering A297 (2001), pp. 111~118.
104. Japanese Standards Association,” Glossary of terms used in metallic superplastic materials”, JIS H 7007 No. 1005, p. 1525.
105. H. Akamatsu, T. Fujinami, Z. Horita and T.G. Langdon,” Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP”, Scripta Materialia, 44 (2001), pp. 759~764.
106. H.B. Geng, S.B. Kang and B.K. Min,” Hight temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing”, Matterials Science and Engineering A373 (2004), pp. 229~238.
107. R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev and T.G. Langdon,” Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing, Scripta Materialia, 49 (2003), pp. 467~472.
108. K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim and D.H. Shin,” High strain rate superplasticity of summicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Matterials Science and Engineering A341 (2003), pp. 273~281.
109. Y.N. Wang and J.C. Huang,” Texture analysis in hexagonal materials”, Materials Chemistry and Physics 81 (2003), pp. 11~26.
110. 蕭一清,5083 鋁合金低溫超塑性研發與變形織構分析,國立中山大學博士論文(2000),45~48 頁.
111. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 563.
112. H-R Wenk and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1381~1384.
113. 蔡東霖,利用ECAE 及退火處理細化鋁鎂合金晶粒,國立中山大學碩士論文 (2000),27~30 頁.
114. F.J. Humphreys, P.B. Prangnell and R. Priestner,” Fined-grained alloys by thermomechanical processing”, Current Opinion in Solid State & Materials Science 5 (2001), pp. 15~21.
115. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 564.
116. http://aluminium.matter.org.uk
117. P.L. Sun, P.W. Kao and C.P. Chang,” Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion”, Materials Science and Engineering A283 (2000), pp. 82~85.
118. F.J. Humphreys and M Hatherly, Recrystallization and Related Annealing Phenomena, 1st edition (1995), p. 437.
119. F.J. Humphreys and M Hatherly, Recrystallization and Related Annealing Phenomena, 1st edition (1995), p. 46.
120. H-R Wenk and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1385~1389.
121. C. Pithan, T. Hashimoto, M. Kawazoe, J. Nagahora and K. Higashi,”
Microstructure and texture evolution in ECAE processed A5056”, Materials Science and Engineering A280 (2000), pp. 62~68.
122. Y.T. Zhu and Terry C. Towe,” Observation and issues on mechanisms of grain refinement during ECAE process”, Materials Science and Engineering A291 (2000), pp. 46~53.
123. W.H. Huang, L. Chang, P.W. Kao and C.P. Chang,” Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion”, Materials Science and Engineering A307 (2001), pp. 113~118.
124. C.H. Hamilton, “ Superplastic Sheet Forming ”, NATO/AGARD
Lecture Series on Superplasticity, 09/1987, pp2-2∼2-4.
125. J Pilling and N Ridley , Superplasticity in Crystalline Solids , The
Institute of Metals , 1989 , p160 .
126. Zhiping Chen , P.F Thomson , Friction Against Superplastic Aluminum Alloys , Wear 201 , 1996 , p227 .
127. Friction , Lubrication , and Wear Technology , ASM HANDBOOK
Volume 18 , p59∼p60 .
128. J. Pilling and N. Ridley , 3rd. Int. Aluminum-Lithium Conf. Eds. C. Baker , P.J. Gregson , S.J. Harris and C.J. Peel , Institute of Metals , London , 1985 , P184.
129. D.J. Miller and T.G. Langdon , Trans. JIM. Vol.21 , 1980 , P123.
130. A.H. Chokshi , J. Mat. Sci. Lett. Vol.5 , 1986 , P144.
131. C.C. Bampton and J.W. Edington , Metall. Trans. Vol.13A , 1982 , P1721.
132. P.Shariat , R.B. Vastava and T.G. Langdon , Acta Metall. , Vol.30 , 1982 , P258.
133. A.E. Geckinli , Metal Sci. , Vol.17 , 1983 , P12.
134. R.C. Gifkins , Superplastic Forming of Structural Alloys , Eds. N.E. Paton and C.H. Hamilton , TMS-AIME , Warrendale , Pa. , USA , 1982 , P3.
135. J.R. Spingarn and W.D. Nix , Acta Metall. , Vol.26 , 1978 ,
P1389.
136. Jiang Xinggang, Cui Jianzhong and Ma Longxiang, “ An Experimental Study of Cavity Nucleation During Superplastic Deformation ”, Material Research Society, Vol.196, 1990, pp51∼56.
137. A.K. Ghosh and C.H. Hamilton, “ Superplastic Forming and Diffusion Bonding ”, SPF/DB workshop Taipei, Feb. 13 –15,
1990, pp157∼168.
138. A.H. Chokshi and A.K. Mnkherjee, “ Acta Metall ”, Vol. 37, 300T, 1989.
139. R. Raj and M.F. Ashby, Acta Metall., Vol. 23, 1975, p653.
140. J.W. Hancock, Metal Sci.,Vol. 10, 1976, p319.
141.楊錫昌, “ 鋁鎂合金5083 超塑成形研究 ”, 國立中央大學, 機
械工程研究所, 06/1994, p15.
142. C.C. Bampton and R. Raj, Acta Metall. Vol. 30, 1982, p2043.
143. J. Pilling and N. Ridley, Acta Metall., Vol. 34, 1986, p669.
144. J. Pilling, Mat. Sci. and Technol., Vol. 1, 1985, p461.
145. C.C.Bampton, A.K. Ghosh and M.W. Mahoney, Superplasticity
in Aerospace — Aluminum, Eds. R. Pearce and L. Kelly, SIS,
Cranfield, Bedford, England, 1985,p1.
146. J. Pilling, B. Geary and N. Ridley, ICSMA 7, Ed. H.J. McQueen and J.P. Bailon, Publ. Pergamon Prress, Oxford, 1985,P.823.
147. M.A. Clark and T.H. Alden, Acta Metallurgica, Vol.21, 1973, p1195.
148. A.K. Ghosh and C.H. Hamilton, Metallurgical Transactions, Vol. 10A, 1979 ,p699.
149. C.H. Hamilton. B.A. Ash, D. Sherwood, and H.C. Heikkinen,
Superplasticity Aerospace, ed. H.C. Heikkinen and T.R. McNelley, The Metallurgical Society, Inc., Warrendale, Pennsylvania, 1988, P29.
150. D.S. Wilkinson and C.H. Caceres, Journal of Material Science Letters, Vol.3, 1984,p395.
151. M.J. Stowell, Superplastic Forming of Structural Alloys, Eds. N.E. Paton and C.H. Hamilton, TMS-AIME, Warrendale, Pa., USA, 1982, p321.
152. H.Y. Wu, J.T. Chern and S. Lee, Materials Science and Manufacturing, Vol.10 ,1995, P90.
153. J.W. Hancock, Metal Sci., Vol.10.1976, p319.
154. S. J. Hales, T. R. McNelley, and H. J. McQueen, Metall. Trans. A, 22A, (1991) p. 1037.
155. T. R. McNelley, R. Crooks, P. N. Kalu, and S. A. Rogers, Mater. Sci. Eng., A166, (1993) p. 135.
156. E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 29A, (1998) p. 1081.
157. E. M. Taleff, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 27A, (1996) p. 343.
158. A. A. Tavassoli, S. E. Razavi, and N. M. Fallah, Metall. Trans. A, 6A, (1975) p. 591.
159. J. K. Kim, and D. H. Shin, Scripta Mater., 38, (1998) p. 991.
160. D. Y. Maeng, Master Dissertation, Department of Metallurgy Engineering, Chungnam National University, Taejon, Korea (1997).