跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃繼賢
Mars Huang
論文名稱: 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
Design of Frequency Synthesizer with 3.1 GHz Wide-Tuned LC-VCO for DVB-T/H/C System
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 英文
論文頁數: 55
中文關鍵詞: 壓控震盪器頻率合成器
外文關鍵詞: Frequency Synthesizer, VCO, PLL
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,頻率合成器在現代的通訊系統上扮演著很重要的角色。在這本論文中,我們主要是在研究有關於頻率合成器與視頻廣播系統 DVB-T/H/C 系統上的關連。因此在這方面,我們希望能夠針對視頻廣播系統 DVB-T/H/C 觀點需求並且實現頻率合成器對其系統上的應用。除此之外,我們也會發現壓控震盪器在頻率合成器裡是很重要的電路元件。最主要是因為壓控震盪器的效能將會直接影響到頻率合成器的運作正確性。而在壓控震盪器的設計上我們主要是以3.1 GHz為此電路的中心頻率且採用 TSMC 0.18μm 1P6M CMOS 的製程技術。而此壓控振盪器可以達到 26.5% 的調頻範圍,相為雜訊可達到 -123dBc @ 1 MHz,-100dBc @ 100 kHz。供應電壓為1.1Volt。此電路設計的優點主要是他可以有效的降低相位雜訊,節省功率消耗且達到較寬的調頻範圍。
    而頻率合成器主要是以鎖相迴路為基礎所延伸的一種電路。而鎖相迴路設計上的最大挑戰不外乎低抖動 (low jitter),快速鎖定,以及功率消耗的問題。所以我們希望利用上述之壓控振盪器能設計出寬頻,低抖動雜訊,低功率消耗和快速鎖定且能應用於視頻廣播系統 DVB-T/H/C之頻率合成器。


    Recently, frequency synthesizer plays an important role in modern communication. In
    this thesis, we study about the theory of frequency synthesizer in connection with DVB-T/H/C
    system. Therefore, we hope realize this application in the light of contribution in DVB-T/H/C.
    Besides, VCO is the major component in frequency synthesizer. The performance of the VCO
    would directly effect on properties of frequency synthesizer. A 3.1GHz LC VCO is designed
    in TSMC 0.18 µm standard CMOS process which achieves a very wide tuning range of 26.5%
    and simulated phase noise of -123dBc at a 1MHz and -100dBc at a 100kHz offset in a 3.1GHz
    operated carrier, while drawing 1mA from a 1.1 V supply voltage. The advantage of this design
    reveals that it can effectively reduce the phase noise and save power consumption together with
    the chip area. In addition, it also makes the LC-VCO to achieve a wide tuning range. Generally,
    this design also can meet the demand of the DVB-T/H/C system.
    Frequency synthesizer design is based on PLL. The challenge in designing the frequency
    synthesizer is the improvement of the performance like jitter, locking time, and power consumption.
    In our target, we hope design a wide band, low jitter, low power consumption ,and fast
    locking frequency synthesizer for DVB-T/H/C system.

    Abstract ii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 The Concept Of Frequency Synthesizer 5 2.1 The Frequency Synthesizer Background Theory . . . . . . . . . . . . . . . . . . . 5 2.2 The Component Of Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Phase Frequency Detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Charge Pump (CP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Loop Filter (LF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Voltage-Controlled Oscillator (VCO) . . . . . . . . . . . . . . . . . . . . . 11 2.2.5 Frequency Divider (FD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 High Performance PLL Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 A Low-Power Adaptive Bandwidth PLL and Clock Buffer With Supply- Noise Compensation [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 The PLL Design For Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 The Linear Model Of PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Third Order PLL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 PLL Behavioral Model Simulation . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 3 3.1 GHz Wide-Band VCO 23 3.1 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 The Switched Tuning Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 4 3.1 GHz Wide-tuned LC-VCO Pre-Simulation, Layout And Measurement 30 4.1 Decision Of The Component Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 The VCO Performance And Pre-Simulation Result . . . . . . . . . . . . . . . . . 33 4.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 3.1GHz Wide-Tuned LC-VCO Measurement Result . . . . . . . . . . . . . . . . . 38 Chapter 5 The Integer N Frequency Synthesizer Pre-Simulation Result 43 5.1 Architecture Of The Proposed Frequency Synthesizer . . . . . . . . . . . . . . . . 43 5.2 Phase Frequency Detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3 Charge Pump (CP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4 Programmable Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.5 Current Mode Logic (CML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.6 Frequency Synthesizer Simulation Results . . . . . . . . . . . . . . . . . . . . . . 51 Chapter 6 Conclusion and future work 52 Bibliography 54

    [1] Mobile and Portable DVB-T Radio Access Interface Specification, MBRAI-02-16, Version
    1.0.
    [2] M. Dawkins et al., ”Single-chip Tuner Design for Digital Terrestrial Television (DTT),” IEEE
    SoC Workshop, Sept., 2000.
    [3] Mark Dawkins, Alison Payne Burdett, Senior Member, ” A Single-Chip Tuner for DVB-T
    IEEE ” , and Nick Cowley IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO.
    8, AUGUST 2003
    [4] A. Schuchert et al., ”Front End Architectures for Multistandard Digital TV Receivers,” IEEE
    Trans. on Consumer Electronics, vol. 46, no. 3, pp. 422-427, Aug., 2000.
    [5] B. Razavi, ”Design of Analog CMOS Integrated Circuit,” New York: vol. 39, Issue: 1, pp.
    43-45, Jan. McGraw-Hill, 2001.
    [6] I. A. Young, J. K. Greason, and K. L. Wong, ”A PLL clock generator with 5 to 110 MHz of
    lock range for microprocessors,” IEEE J. Solid-State Circuits, vol. 27, pp. 1599-1607, Nov.
    1992.
    [7] J. Alvarez, H. Sanchez, G. Gerosa, and R. Countryman, ”A wide bandwidth low-voltage
    PLL for power PCTM microprocessors,” IEEE J. Solid-State Circuits, vol. 30, pp. 383-391,
    Apr. 1995.
    [8] R. Bhagwan and A. Rogers, ”A 1 GHz dual-loop microprocessor PLL with instant frequency
    shifting,” in IEEE Proc. ISSCC, San Francisco,CA,pp.336-337, Feb. 1997.
    [9] R.E. Best, ”Phase-Locked Loops,” Second Ed., New York: McGraw-Hill, 1993.
    [10] F. M. Gardner, ”Phaselock Techniques,” Second Ed., New York: Wiley & Sons, 1979.
    [11] B. Razavi, Monolithic phase-locked loops and clock recovery circuits: theory and design,
    IEEE press, 1996.
    [12] F. M. Gardner, ”Charge-pump phase-locked loops,” IEEE Trans. Commun., vol. COM-28,
    pp.1849-1858, Nov. 1980.
    [13] Tang, Y. and Ismail, M.; Bibyk, S., ”Adaptive Miller capacitor multiplier for compact
    on-chip PLL filter” Electronics Letters, vol. 39, Issue: 1, pp. 43-45, Jan.
    [14] H.-H. Chang and J.-C. Wu, ”A 723-MHz 17.2-mw CMOS programmable counter,” IEEE
    J. Solid-State Circuits, vol.33, pp.1572-1575, Oct. 1998.
    [15] Larsson, P., ” High-speed architecture for a programmable frequency divider and a dualmodulus
    prescaler,” IEEE J. Solid-State Circuits, vol.31, pp.744-748, 75, Oct. 1998. May
    1996.
    [16] K.-H. Cheng, W.-B. Yang, and C.-M. Ying, ”A dual-slope phase frequency detector and
    charge pump architecture to achieve fast locking of phase-locked loop,” IEEE J. Transactions
    on Circuits and Systems, vol.50, pp. 892-896, Nov. 2003
    [17] Inchul Hwang, Soonsub Lee, Sangwon Lee, and Soowon Kim, ”A digitally controlled phaselocked
    loop with fast locking scheme for clock synthesis application,” in IEEE Int. Solid-State
    Circuits Conf. Dig. Tech. Papers, pp. 168-169, Feb 2000.
    [18] Joonsuk Lee; Beomsup Kim, ”A low-noise fast-lock phase-locked loop with adaptive bandwidth
    control,” IEEE J. Solid-State Circuits, vol.35, pp. 1137-1145, Aug. 2000.
    [19] Mansuri, M. and Yang, C.-K.K., ”A low-power adaptive bandwidth PLL and clock buffer
    with supply-noise compensation,” IEEE J. Solid-State Circuits, vol. 38, pp. 1804-1812, Nov.
    2003.
    [20] J. Maneatis, ”Low-jitter process independent DLL and PLL based on self-biased techniques,”
    IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996.
    [21] J. M. Ingino, ”A 4 GHz 40 dB PSRR PLL for an SOC application,” in IEEE Int. Solid-State
    Circuits Conf. Dig. Tech. Papers, pp. 392-393, Feb. 2001.
    [22] Lin, J. , Haroun, B., Foo, T., Jin-Sheng Wang, Helmick, B., Randall, S., Mayhugh, T.,
    Barr, C., and Kirkpatric, J., ”A PVT tolerant 0.18MHz to 600MHz self-calibrated digital
    PLL in 90nm CMOS process,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers,
    pp. 488-541, Feb. 2004.
    [23] Maneatis, J.G., Kim, J., McClatchie, I., Maxey, J., and Shankaradas, M., ”Self-biased
    high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL,” IEEE J. Solid-State
    Circuits, vol. 38, pp. 1795-1803, Nov. 2003.
    [24] Maxim, A., ”A 0.16-2.55-GHz CMOS active clock deskewing PLL using analog phase interpolation,”
    IEEE J. Solid-State Circuits, vol. 40, pp. 110-131, Jan. 2005.
    [25] S. Sidiropoulos et al., ”Adaptive bandwidth DLLs and PLLs using regulated supply CMOS
    buffers,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 124-127, June 2000.
    [26] ”An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge
    Pump PLL’s” National Semiconductor application note, July 2001.
    [27] Shen-Iuan Liu., ”Theory and Application of Phase-Locked Loop.” Department of Electrical
    Engineering National Taiwan University. 2004
    [28] Ching-Yuan Yang., ”Phase-Locked Loops.” Department of Electrical Engineering National
    Chung-Hsing University. 2004
    [29] Axel D. Berny, Student Member, IEEE, Ali M. Niknejad, Member, IEEE, and Robert
    G. Meyer, Fellow, IEEE,”A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital
    Amplitude Calibration,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO.
    4, APRIL 2005.
    [30] Zhenbiao Li and Kenneth K. O,”A Low-Phase-Noise and Low-Power Multiband CMOS
    Voltage Controlled Oscillator,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40,
    NO. 6, JUNE 2005.
    [31] Ali Fard, Tord Johnson and Denny Aberg Malardalen University, Department of Electronics,”
    A Low Power Wide Band CMOS VCO for Multi-Standard Radios,” 2004 IEEE.
    [32] P. Antoine1, P. Bauser3, H. Beaulaton1, M. Buchholz4, D. Carey2, T. Cassagnes1,T.
    K. Chan2, S. Colomines1, F. Hurley2, D. Jobling3, N. Kearney2, A. Murphy2, J. Rock2,
    D. Salle1, C-T. Tu31Freescale Semiconductor, Toulouse, France 2Freescale Semiconductor,
    Cork, Ireland 3Formerly with Motorola SPS, Geneva, Switzerland 4Formerly with Motorola
    SPS, Munich, Germany,”A Direct-Conversion Receiver for DVB-H” ISSCC 2005 / SESSION
    23 / WIRELESS RECEIVERS FOR CONSUMER ELECTRONICS 23.1
    [33] Ali Fard MLalardalen University, Dept. of Computer Science and Electronics, VLasterXas,
    P.O. Box 883 SE-721 23, Sweden ”Phase noise and amplitude issues of a wide-band VCO
    utilizing a switched tuning resonator” Fard, A.; Circuits and Systems, 2005. ISCAS 2005.
    IEEE International Symposium on 23-26 May 2005 Page(s):2691 - 2694 Vol. 3 Digital Object
    Identifier 10.1109/ISCAS.2005.1465181
    [34] H. Sjoland, ”Improved Switched Tuning of Differential CMOS VCOs, IEEE Transactions
    on Circuits and Systems”, Analog and Digital Signal Processing, Vol. 49, No. 5. May 2002
    [35] Z. Gu and A. Thiede, ”18 GHz low-power CMOS static frequency divider”, ELECTRONICS
    LETTERS 2nd October 2003

    QR CODE
    :::