跳到主要內容

簡易檢索 / 詳目顯示

研究生: 薛任杰
Jen-Chieh Hsueh
論文名稱: 酶催化反應對甘氨酸多晶型的影響
The Influence of Enzymatic Reaction on Glycine Polymorphism
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 145
中文關鍵詞: 酶催化反應甘胺酸多晶型
外文關鍵詞: Enzymatic reaction, Glycine, Polymorphism
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綠色化學是當今世界 的重要議題。 透過 催化 反應可 反應可 反應可 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 提高反應速率符合綠色化學的 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 範疇。在這項研究中,我們成功地優化了酶水解反應過程並確認酰基轉移的可 重複使用性。我們酰基轉移酶作為生物催化劑,在 重複使用性。我們酰基轉移酶作為生物催化劑,在 重複使用性。我們酰基轉移酶作為生物催化劑,在 重複使用性。我們酰基轉移酶作為生物催化劑,在 重複使用性。我們酰基轉移酶作為生物催化劑,在 35°-40°C、pH=7 的水中解 的水中解 的水中解 的水中解 的水中解 N-乙酰甘氨酸 以形成乙酰甘氨酸 以形成乙酰甘氨酸 以形成。甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 甘氨酸有幾種趣的多晶型物 :α-、β-和 γ-甘氨酸 。甘氨 酸的多晶型物通常過在水中 酸的多晶型物通常過在水中 酸的多晶型物通常過在水中 再結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多結晶 製備。為了探究酶的添加是否影響甘氨酸多型,我們 型,我們 型,我們 型,我們 藉著 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 四個過程製備了甘氨酸晶體:( 1)通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, )通過添加抗溶劑從水中再結晶甘氨酸, (2)通過抗溶劑對 )通過抗溶劑對 )通過抗溶劑對 )通過抗溶劑對 )通過抗溶劑對 )通過抗溶劑對 )通過抗溶劑對 N-乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 乙酰甘氨酸使用基轉移酶在 35°-40°C下攪拌一天水解 反應 產生的甘氨酸進行抗溶劑結晶。 產生的甘氨酸進行抗溶劑結晶。 產生的甘氨酸進行抗溶劑結晶。 產生的甘氨酸進行抗溶劑結晶。 (3) 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 在酰基轉移酶存下通過添加抗溶劑從水中再結 晶甘氨酸,以及 晶甘氨酸,以及 晶甘氨酸,以及 晶甘氨酸,以及 晶甘氨酸,以及 晶甘氨酸,以及 晶甘氨酸,以及 (4) 在 酰基轉移酶存在 酰基轉移酶存在 酰基轉移酶存在 酰基轉移酶存在 酰基轉移酶存在 酰基轉移酶存在 酰基轉移酶存在 酰基轉移酶存35°-40°C下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 下攪拌一天並通過添加抗溶劑從水 中再結晶甘氨酸。 比較了四種方法在 比較了四種方法在 比較了四種方法在 比較了四種方法在 比較了四種方法在 比較了四種方法在 比較了四種方法在 比較了四種方法在 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 添加抗溶劑結晶前調整 pH值至 4, 7 與 10的結 果。 N-乙酰甘氨酸在 乙酰甘氨酸在 乙酰甘氨酸在 乙酰甘氨酸在 乙酰甘氨酸在 乙酰甘氨酸在 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 酸性、鹼和中環境下經酰基轉移酶水解得到的甘氨晶體均 為高純度 β-甘氨酸 。然而 ,其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 其他三種方法幾乎都 產出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合出了不同多晶型物 的混合。


    Green chemistry (sustainable chemistry) is an important issue in the whole world now. The use of catalysts to increase the reaction rate is in line with the scope of green chemistry. In this work, an enzymatic hydrolysis reaction process has been successfully intensified and the hydrolytic enzyme acylase can be recycled and reused. Acylase was used as a biocatalyst to hydrolyze N-acetylglycine to form glycine in water at pH=7 at 35° to 40°C . The hydrolyzed glycine has three interesting polymorphs: α-, β- and γ-glycine. Polymorphs of glycine are usually made by recrystallization in water. To explore further of whether the addition of enzymes affects the polymorphism of glycine, we prepared glycine crystals through the four approaches: (1) recrystallization of glycine from water by antisolvent addition, (2) antisolvent crystallization of glycine produced by the hydrolysis of N-acetylglycine via acylase, stirred at 35° to 40°C for a day, (3) recrystallization of glycine from water by antisolvent addition in the presence of acylase, and (4) recrystallization of glycine from water by antisolvent addition in the presence of acylase, stirred at 35° to 40°C for a day. The pH values were adjusted to 4, 7 and 10 for all abovementioned methods before antisolvent addition for crystallization. The results of the above four methods were then compared. The glycine crystals obtained by the hydrolysis of N-acetylglycine via acylase under acidic, alkaline and neutral environments were all high-purity β-glycine. However, the other three methods almost gave a mixture of various glycine polymorphs.

    Table of Contents 摘要 ................................ ................................ ................................ ................................ i Abstract ................................ ................................ ................................ ......................... ii Table of Contents ................................ ................................ ................................ ......... iv List of Figures ................................ ................................ ................................ ............. vii List of Tables ................................ ................................ ................................ .............. xiv List of Schemes ................................ ................................ ................................ .......... xvi Chapter 1 Introduction ................................ ................................ ............................... 1 Green Chemistry ................................ ................................ ........................ 1 Biocatalytic Process ................................ ................................ ................... 4 Introduction of Glycine ................................ ................................ .............. 9 Glycine Polymorphism ................................ ................................ ............. 11 Method of Controlling Polymorphs of Glycine ................................ ........ 20 Conceptual Framework ................................ ................................ ............ 23 Chapter 2 Experimental Section ................................ ................................ ............... 25 Materials ................................ ................................ ................................ .. 25 2.1.1 Chemicals................................ ................................ .......................... 25 2.1.2 Solvents ................................ ................................ ............................. 25 v Experimental Methods ................................ ................................ ............. 28 2.2.1 Initial Solvent Selection of Glycine ................................ .................. 28 2.2.2 Solubility Measurement ................................ ................................ .... 29 2.2.3 Glycine Recrystallization by Cooling in Water ................................ . 30 2.2.4 Glycine Recrystallization by Antisolvent Addition ........................... 30 2.2.5 Original Process for Glycine Production by Enzymatic Reaction ..... 31 2.2.6 Intensified Process for Glycine Production by Enzymatic Reaction . 33 2.2.7 Glycine Recrystallization by Antisolvent Addition at Different pH Values ................................ ................................ ................................ 35 2.2.8 Recycling and Reuse of Acylase ................................ ....................... 40 Analytical Instruments ................................ ................................ ............. 41 2.3.1 pH-indicator Strips ................................ ................................ ............ 41 2.3.2 Optical Microscopy (OM) ................................ ................................ . 41 2.3.3 Fourier Transform Infrared (FTIR) Spectroscopy ............................. 42 2.3.4 Powder X-ray Diffraction (PXRD) ................................ ................... 42 2.3.5 Ultraviolet and Visible (UV/Vis) Spectrophotometer ........................ 43 2.3.6 Centrifugation ................................ ................................ ................... 44 2.3.7 Fluorescence Spectrophotometer ................................ ...................... 45 Chapter 3 Results and Discussion ................................ ................................ ............ 47 vi Use Test of Glycine ................................ ................................ .................. 47 3.1.1 FT-IR Spectroscopy ................................ ................................ .......... 47 3.1.2 PXRD Diffractometer ................................ ................................ ....... 49 Initial Solvent Screening ................................ ................................ .......... 51 3.2.1 Solubility Curve ................................ ................................ ................ 53 3.2.2 Glycine Recrystallization by Cooling in Water ................................ . 54 3.2.3 Glycine Recrystallization by Antisolvent Addition ........................... 55 Process Intensification of Enzymatic Reaction for Glycine ..................... 58 Recycling and Reuse of Acylase ................................ .............................. 63 Factors Affecting Glycine Polymorphism: pH, Solvent and Enzymatic Reaction ................................ ................................ ................................ ... 75 3.5.1 Influence of Solvent and pH on the Glycine Polymorphism ............. 76 3.5.2 Influence of Solvent, pH and Acylase on Glycine Polymorphism .... 82 Acylase Conformations ................................ ................................ ............ 97 Chapter 4 Conclusions and Future Works ................................ .............................. 106 Conclusions ................................ ................................ ............................ 106 Future Works ................................ ................................ .......................... 107 References ................................ ................................ ................................ ................. 109

    1 Poliakoff, M.; Licence, P. Green chemistry. Nature. 2007, 450 (7171), 810-812.
    2 Tang, S. L.; Smith, R. L.; Poliakoff, M. Principles of green chemistry: PRODUCTIVELY. Green Chem. 2005, 7 (11), 761-762..
    3 Sheldon, R. A. The E factor: Fifteen years on. Green Chem. 2007, 9 (12), 1273-1283.
    4 Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39 (1), 301-312.
    5 Kalidindi, S. B.; Jagirdar, B. R. Nanocatalysis and prospects of green chemistry. ChemSusChem 2012, 5 (1), 65-75.
    6 Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Knutti, R.; Alcamo, J.; Riahi, K.; Hare, W. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 2015, 10 (10), 105007.
    7 Pandey, D.; Agrawal, M.; Pandey, J. S. Carbon footprint: current methods of estimation. Environ. Monit. Assess. 2011, 178 (1), 135-160.
    8 Sheldon, R. A. E factors, green chemistry and catalysis: An odyssey. Chem. Commun. 2008, (29), 3352-3365.
    9 Sheldon, R. A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 2012, 41 (4), 1437-1451.
    10 Choct, M. Enzymes for the feed industry: Past, present and future. World's Poult. Sci. J. 2006, 62 (1), 5-16.
    11 Dirk, L.; Schmidt, J. J.; Cai, Y.; Barnes, J. C.; Hanger, K. M.; Nayak, N. R.; Williams, M. A.; Grossman, R. B.; Houtz, R. L.; Rodgers, D. W. Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture. Biochem. J 2008, 413 (3), 417-427.
    12 Campbell, G.; Bedford, M. Enzyme applications for monogastric feeds: A review. Can. J. Anim. Sci. 1992, 72 (3), 449-466.
    13 Rasor, J. P.; Voss, E. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal., A 2001, 221 (1-2), 145-158.
    14 Margesin, R.; Schinner, F. Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability. Biol. Fertil. Soils 1994, 18 (4), 320-326.
    15 Van den Broeck, I.; Ludikhuyze, L. R.; Van Loey, A. M.; Hendrickx, M. E. Effect of temperature and/or pressure on tomato pectinesterase activity. J. Agric. Food Chem. 2000, 48 (2), 551-558.
    16 Qi, B.; Chen, X.; Su, Y.; Wan, Y. Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour. Technol. 2011, 102 (3), 2881-2889.
    17 Sheldon, R. A. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005, 7 (5), 267-278.
    18 Mitta, M.; Kato, I.; Tsunasawa, S. The nucleotide sequence of human aminoacylase-1. Biochim. Biophys. Acta, Gene Struct. Expression 1993, 1174 (2), 201-203.
    19 Guan, Z.; Song, J.; Xue, Y.; Yang, D.-C.; He, Y.-H. J. Enzyme-catalyzed asymmetric Mannich reaction using acylase from Aspergillus melleus. J. Mol. Catal. B: Enzym. 2015, 111, 16-20.
    20 Latt, S. A.; Holmquist, B.; Vallee, B. L. Thermolysin: A zinc metalloenzyme. Biochem. Biophys. Res. Commun. 1969, 37 (2), 333-339.
    21 D'Ambrosio, C.; Talamo, F.; Vitale, R. M.; Amodeo, P; Tell, G.; Ferrara, L.; Scaloni, A. Probing the Dimeric Structure of Porcine Aminoacylase 1 by Mass Spectrometric and Modeling Procedures. Biochemistry. 2003, 42(15), 4430–4443
    22 Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013, 45(3), 463–477.
    23 Razak, M. A.; Begum, P. S.; Viswanath, B.; Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: A review. Oxid. Med. Cell. Longevity. 2017, 2017, 1-8.
    24 Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: implications for nutrition and health. J. Amino Acids 2013, 45 (3), 463-477.
    25 Markel, A. L.; Achkasov, A. F.; Alekhina, T. A.; Prokudina, O. I.; Ryazanova, M. A.; Ukolova, T. N.; Efimov, V. M.; Boldyreva, E. V.; Boldyrev, V. V. Effects of the alpha-and gamma-polymorphs of glycine on the behavior of catalepsy prone rats. Pharmacol. Biochem. Behav. 2011, 98 (2), 234-240.
    26 Max, J.-J.; Trudel, M.; Chapados, C. Infrared titration of aqueous glycine. Appl. Spectrosc. 1998, 52 (2), 226-233.
    27 Brittain, H. G. Polymorphism and solvatomorphism 2010. J Pharm Sci. 2012, 101(2), 464–484.
    28 Gu, C.-H.; Young Jr, V.; Grant, D. J. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90 (11), 1878-1890.
    29 Karpinski, P. H. Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol. 2006, 29 (2), 233-237.
    30 Yu, L.; Ng, K. Glycine crystallization during spray drying: The pH Effect on salt and polymorphic Forms. J Pharm Sci. 2002, 91(11), 2367–2375.
    31 Srinivasan, K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J. Cryst. Growth. 2008, 311(1), 156–162.
    32 Hrkovac, M.; Kardum, J. P.; Schuster A.; Ulrich J. Influence of additives on glycine crystal characteristics. Chem Eng Technol, 2011, 34(4), 611–618.
    33 Ivanova, B. B. Solid state linear-dichroic infrared (IR-LD) spectroscopic characterization of α-and β-glycine polymorphs. Cent. Eur. J. Chem. 2006, 4(1), 111–117.
    34 Yang, X.; Wang, X.; Ching, C. B. Solubility of form α and form γ of glycine in aqueous solutions. J. Chem. Eng. Data. 2008, 53(5), 1133–1137.
    35 Ding, L.; Zong, S.; Dang, L.; Wang, Z.; Wei, H. Effects of inorganic additives on polymorphs of glycine in microdroplets. CrystEngComm 2018, 20 (2), 164-172.
    36 Boldyreva, E.; Drebushchak, V.; Drebushchak, T.; Paukov, I.; Kovalevskaya, Y. A.; Shutova, E. Polymorphism of glycine, Part I. J. Therm. Anal. Calorim. 2003, 73 (2), 409-418.
    37 Marsh, R. E. A refinement of the crystal structure of glycine.Acta Cryst. 1958, 11(9), 654–663.
    38 Iitaka, Y. The crystal structure of β-glycine. Acta Cryst. 1960, 13(1), 35–45.
    39 Iitaka, Y. The crystal structure of γ-glycine. Acta Cryst. 1961, 14(1), 1–10.
    40 Dawson, A.; Allan, D. R.; Belmonte, S. A.; Clark, S. J.; David, W. I.; McGregor, P. A.; Parsons, S.; Pulham, C. R.; Sawyer, L. Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 2005, 5 (4), 1415-1427.
    41 Yin Y.; Chow P.S.; and Tan B.H. Glycine open dimers in solution: New insights into α-glycine nucleation and growth. Cryst. Growth Des. 2012, 12 (10), 4771−4778.
    42 Chocholoušová, J.; Vacek, J.; Huisken, F.; Werhahn, O.; Hobza, P. Stacked Structure of the glycine dimer is more stable than the cyclic planar geometry with Two O− H…O hydrogen bonds: Concerted action of empirical, high-level nonempirical ab initio, and experimental studies. J. Phys. Chem. A 2002, 106 (47), 11540-11549.
    43 Chew, J. W.; Black, S. N.; Chow, P. S.; Tan, R. B.; Carpenter, K. J. Stable polymorphs: Difficult to make and difficult to predict. CrystEngComm 2007, 9 (2), 128-130.
    44 Gidalevitz, D.; Feidenhans'l, R.; Matlis, S.; Smilgies, D. M.; Christensen, M. J.; Leiserowitz, L. Monitoring in situ growth and dissolution of molecular crystals: Towards determination of the growth units. Angew. Chem., Int. Ed. Engl. 1997, 36 (9), 955-959.
    45 Perlovich, G.; Hansen, L. K.; Bauer-Brandl, A. The polymorphism of glycine. Thermochemical and structural aspects. J. Therm. Anal. Calorim. 2001, 66 (3), 699-715.
    46 Ferrari, E. S.; Davey, R. J.; Cross, W. I.; Gillon, A. L.; Towler, C. S. Crystallization in polymorphic systems: The solution-mediated transformation of β to α glycine. Cryst. Growth Des. 2003, 3(1), 53–60.
    47 Sakai, H.; Hosogai, H.; Kawakita, T.; Onuma, K.; Tsukamoto, K. Transformation of α-glycine to γ-glycine. J. Cryst. Growth 1992, 116 (3-4), 421-426.
    48 Sun, X.; Garetz, B. A.; Myerson, A. S. Supersaturation and polarization dependence of polymorph control in the nonphotochemical laser-induced nucleation (NPLIN) of aqueous glycine solutions. Cryst. Growth Des. 2006, 6 (3), 684-689.
    49 Srinivasan, K.; Renuka Devi, K.; Anbuchudar Azhagan, S. Characterization of α and γ polymorphs of glycine crystallized from water‐ammonia solution. Cryst. Res. Technol. 2011, 46 (2), 159-165.
    50 Azhagan, S. A. C.; Ganesan, S. Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals. Arabian J. Chem. 2017, 10, S2615-S2624.
    51 Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-93.
    52 Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu, J.-C.; Chen, L.-T. J. Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chem. Eng. J. 2013, 225, 809-817.
    53 Chen, L.; Xue, X.; Jiang, D.; Yang, J.; Zhao, B.; Han, X. X.; Jung, Y. M. A turn-on resonance Raman scattering (BCS/Cu+) sensor for quantitative determination of proteins. Appl Spectrosc. 2016, 70 (2), 355-362.
    54 https://www.flottweg.com/fileadmin/user_upload/data/pdf-downloads/Sedicanter-EN.pdf
    55 Hirajima, T.; Sasaki, K.; Bissombolo, A.; Hirai, H.; Hamada, M.; Tsunekawa, M. Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation. Sep. Purif. Technol. 2005, 44 (3), 197-204.
    56 Lakowicz, J. R. Protein fluorescence. In Principles of fluorescence spectroscopy, Springer: 1983; pp 341-381.
    57 Huang, M.-Q.; Zhou, H.-M. Alkaline unfolding and salt-induced folding of aminoacylase at high pH. Enzyme Protein 1994, 48(4), 229-237.
    58 Sankar, S.; Manikandan, M.; Ram, S. G.; Mahalingam, T.; Ravi, G. Gel growth of α and γ glycine and their characterization. J. Cryst. Growth. 2010, 312 (19), 2729-2733.
    59 Sander, A.; Penović, T.; Šipušić, J. Crystallization of β‐glycine by spray drying. Cryst. Res. Technol. 2011, 46 (2), 145-152.
    60 Seyedhosseini, E.; Ivanov, M.; Bystrov, V.; Bdikin, I.; Zelenovskiy, P.; Shur, V. Y.; Kudryavtsev, A.; Mishina, E. D.; Sigov, A. S.; Kholkin, A. L. Growth and nonlinear optical properties of β-glycine crystals grown on Pt substrates. Cryst. Growth Des. 2014, 14 (6), 2831-2837.
    61 Md. Badruddoza, A. Z.; Toldy, A. I.; Hatton, T. A.; Khan, S. A. Functionalized silica nanoparticles as additives for polymorphic control in emulsion-based crystallization of glycine. Cryst. Growth Des. 2013, 13 (6), 2455-2461.
    62 Di Profio, G.; Tucci, S.; Curcio, E.; Drioli, E. Selective glycine polymorph crystallization by using microporous membranes. Cryst. Growth Des. 2007, 7 (3), 526-530.
    63 Yang, X.; Lu, J.; Wang, X.-J.; Ching, C.-B. Effect of sodium chloride on the nucleation and polymorphic transformation of glycine. J. Cryst. Growth 2008, 310 (3), 604-611.
    64 Chai, Q.; Yang, C. H.; Teo, K. L.; Gui, W. H. Optimal control of an industrial-scale evaporation process: Sodium aluminate solution. Control. Eng. Pract. 2012, 20 (6), 618-628.
    65 Lavrov, K.; Zalunin, I.; Kotlova, E.; Yanenko, A. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides. Biochemistry. 2010, 75 (8), 1006-1013.
    66 Lee, T.; Yeh, K. L.; You, J. X.; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible crystallization of sodium dodecyl sulfate· 1/8 hydrate by evaporation, antisolvent addition, and cooling. ACS Omega 2020, 5 (2), 1068-1079.
    67 Rosado, M. T.; Duarte, M. L. T.; Fausto, R. Vibrational spectra of acid and alkaline glycine salts. Vib Spectrosc. 1998, 16 (1), 35-54.
    68 Weissbuch, I.; Torbeev, V. Y.; Leiserowitz, L.; Lahav, M. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. 2005, 117 (21), 3290-3293.
    69 Threlfall, T. Crystallisation of polymorphs: Thermodynamic insight into the role of solvent. Org. Process Res. Dev. 2000, 4 (5), 384-390.
    70 Kitamura, M. Controlling factor of polymorphism in crystallization process. J. Cryst. Growth 2002, 237, 2205-2214.
    71 Shiau, L.-D. Modelling of the polymorph nucleation based on classical nucleation theory. Crystals 2019, 9 (2), 69.
    72 Yang, X.; Wang, X.; Ching, C. B. Solubility of form α and form γ of glycine in aqueous solutions. J. Chem. Eng. Data. 2008, 53(5), 1133-1137.
    73 Thomas, P. D.; Dill, K. A. Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci. 1993, 2 (12), 2050-2065.
    74 Schubert, P. F.; Finn, R. K. Alcohol precipitation of proteins: the relationship of denaturation and precipitation for catalase. Biotechnol. Bioeng. 1981, 23 (11), 2569-2590.
    75 Konno, T.; Tanaka, N.; Kataoka, M.; Takano, E.; Maki, M. A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I. Biochim. Biophys. Acta 1997, 1342 (1), 73-82.
    76 Parambil, J. V.; Poornachary, S. K.; Tan, R. B.; Heng, J. Y. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs. J. Cryst. Growth 2017, 469, 84-90.
    77 Peterson, G. W.; Rossin, J. A.; Karwacki, C. J.; Glover, T. G. Surface chemistry and morphology of zirconia polymorphs and the influence on sulfur dioxide removal. J. Phys. Chem. C 2011, 115 (19), 9644-9650.
    78 Parambil, J. V.; Poornachary, S. K.; Tan, R. B.; Heng, J. Y. Template-induced polymorphic selectivity: the effects of surface chemistry and solute concentration on carbamazepine crystallisation. CrystEngComm 2014, 16 (23), 4927-4930.
    79 Božič, A. L.; Podgornik, R. pH dependence of charge multipole moments in proteins. Biophys. J. 2017, 113 (7), 1454-1465.
    80 Dawson, R. M. C.; Elliott, D. C.; Elliott, W. H.; Jones, K. M., Data for biochemical research. Clarendon Press: 2002; Vol. 3.
    81 Mitta, M.; Ohnogi, H.; Yamamoto, A.; Kato, I.; Sakiyama, F.; Tsunasawa, S. The primary structure of porcine aminoacylase 1 deduced from cDNA sequence. J. Biochem. 1992, 112 (6), 737-742.
    82 Monsellier, E.; Bedouelle, H. Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng. Des. Sel. 2005, 18 (9), 445-456.
    83 Xie, Q.; Guo, T.; Wang, T.; Lu, J.; Zhou, H. M. Aspartate-induced aminoacylase folding and forming of molten globule. Int. J. Biochem. Cell Biol. 2003, 35 (11), 1558-1572.
    84 Liao, F. S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.; Chou, L. Y.; Wu, K. C. W.; Tsung, C. K. Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. J. Am. Chem. Soc. 2017, 139 (19), 6530-6533.
    85 Shang, L.; Wang, Y.; Jiang, J.; Dong, S. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 2007, 23 (5), 2714-2721.
    86 Arand, K.; Stock, D.; Burghardt, M.; Riederer, M. J. pH-dependent permeation of amino acids through isolated ivy cuticles is affected by cuticular water sorption and hydration shell size of the solute. J. Exp. Bot. 2010, 61 (14), 3865-3873.
    87 Schmitz, K. S., Physical Chemistry: Multidisciplinary Applications in Society. Elsevier: 2018.
    88 Matulis, D.; Baumann, C. G.; Bloomfield, V. A.; Lovrien, R. E. 1‐Anilino‐8‐naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 1999, 49 (6), 451-458.
    89 Uversky, V. N.; Winter, S.; Löber, G. Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys. Chem. 1996, 60 (3), 79-88.

    QR CODE
    :::