跳到主要內容

簡易檢索 / 詳目顯示

研究生: 夏笙
Shen Hsia
論文名稱: 應用於椎莖骨釘植入之CT影像式手術導引系統
CT-based navigation system for pedicle screw insertion
指導教授: 曾清秀
Ching Shiow Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 椎莖骨釘植入手術手術導引
外文關鍵詞: surgical navigation, pedicle screw
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電腦立體醫學影像技術並配合光學式定位裝置發展一應用於椎莖骨釘植入的手術導引系統,協助醫師對於病患的病情診斷及在手術中的定位更加精確。
    本系統主要分為四個步驟:影像三維重建、手術路徑規劃、方位校準與手術導引。在影像三維重建方面,將病患的二維電腦斷層掃描影像重建成三維模型,並同時顯示其正交剖面資訊,協助醫生做病患病情之診斷;之後進行手術路徑規劃,醫師透過軸向剖面與矢向剖面來規劃手術路徑,最後並透過與規劃手術路徑垂直的剖面資訊來檢查手術路徑的安全性;接下來進行方位校準,系統利用ICP演算法來完成病患脊椎與重建之三維脊椎模型之間的曲面對應,藉以求出影像座標與定位裝置座標之間的轉換關係;最後進行手術導引,系統將手術器械的位置即時顯示於影像中,並提供以手術器械軸向方向為法向量並通過手術器械端點之切平面影像,協助醫師更安全的完成手術。
    本研究所發展之系統經過三次的系統精度實驗與一次的模擬椎莖骨釘植入手術實驗後,實驗結果顯示系統之平均定位誤差約為0.88±0.50mm,平均角度誤差約為1.34±0.58°;而模擬椎莖骨釘植入手術實驗的結果在經由C-arm影像檢測後,也顯示系統能正確的導引椎莖骨釘植入至安全的位置。


    摘 要 I 目 錄 II 圖 目 錄 IV 表 目 錄 VII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究方法 3 1-4 論文介紹 3 第二章 系統架構 5 2-1 硬體架構 5 2-1-1 光學式定位裝置 6 2-1-2 手術器械 8 2-2 軟體架構 9 第三章 脊椎手術定位導引 14 3-1系統作業流程 14 3-2 醫學影像與重建 16 3-2-1 醫學影像 16 3-2-2 影像重建 16 3-2-3 剖面資訊 18 3-3 術前診斷 20 3-4 手術路徑規劃 22 3-5 座標系統定義 25 3-6 座標系統轉換 26 3-6-1 轉換矩陣 26 3-6-2 座標系統間的轉換 27 3-7 方位校準 28 3-7-1 方位校準的方法 28 3-7-2 ICP演算法說明 29 3-7-3 方位校準的流程 32 第四章 實驗結果與討論 36 4-1 系統定位誤差之分析 36 4-2 系統定位誤差與角度誤差之分析﹙一﹚ 40 4-3 系統定位誤差與角度誤差之分析﹙二﹚ 45 4-4 使用Saw bone 模型模擬手術實驗 47 第五章 結論 58 參考文獻 60

    [1] AESCULAP AG & CO. KG, Germany, http://www.orthopilot.com/
    [2] Besl, P. J. and Mckay, N. D., “A method for registration of 3-D shapes,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 14, pp. 239-256, 1992.
    [3] Benjemaa, R. and Schmitt, F., “Fast global registration of 3D sampled surfaces using a multi-z-buffer technique,” Image and Vision Computing, Vol. 17, pp. 113–123, 1999.
    [4] BrainLAB, Germany, http://www.brainlab.com/
    [5] Eyke, J. C., Ricciardi, J. E., ROESCH, W., and WHITECLOUD, T. S. III, “Computer-assisted virtual fluoroscopy,” The University of Pennsylvania Orthopaedic Journal, Vol. 15, pp. 53–59, 2002.
    [6] Foley, K. T., Gupta, S. K., Justis, J. R., and Sherman, M. C., “Percutaneous pedicle screw fixation of the lumbar spine,” Neurosurg. Focus, Vol. 10, pp. 1-9, 2001.
    [7] Gebhard, F., Weidner, A., Liener, U. C., Stöckle, U., and Arand, M., “Navigation at the spine,” Injury, Int. J. Care Injured, Vol. 35, S-A35-45, 2004.
    [8] Hüfner, T., Gebhard, F., Grützner, P. A., Messmer, P., Stöckle, U., and Krettek, C., ”Which navigation when?,” Injury, Int. J. Care Injured, Vol. 35, S-A30-34, 2004.
    [9] Herring, J. L., Dawant, B. M., Maurer, C. R., Muratore, D. M., Galloway, R. L., and Fitzpatrick, J. M., “Surface-based registration of CT images to physical space for image-guided surgery of the spine:a sensitivity study,” IEEE Trans. Med. Imag., Vol. 17, No. 5, pp. 743-752, 1998.
    [10] Herring, J. L. and Dawant, B. M., “Automatic lumbar vertebral identification using surface-based registration,” Journal of Biomedical Informatics, Vol. 34, pp. 74-84, 2001.
    [11] Kalfas, I. H., “Image-guided spinal navigation: application to spinal metastases,” Neurosurg. Focus, Vol. 11, pp. 1-10, 2001.
    [12] Kim, K. D., Johnson, J. P., and Babbitz, J. D., “Image-guided thoracic pedicle screw placement:a technical study in cadavers and preliminary clinical experience,” Neurosurg. Focus, Vol. 10, pp. 1-5, 2001.
    [13] Livyatan, H., Yaniv, Z., and Joskowicz, L., “Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT,” IEEE Trans. Med. Imag., Vol. 22, No. 11, pp. 1395-1406, 2003.
    [14] Lorensen, W. E. and Cline, H. E., “Marching cubes:a high resolution 3D surface construction algorithm,” Computer Graphics, Vol. 21, pp. 163-169, 1987.
    [15] Maurer, C. R., Maciunas, R. J., and Fitzpatrick, J. M., “Registration of head CT images to physical space using a weighted combination of points and surfaces,” IEEE Trans. Med. Imag., Vol. 17, No. 5, pp. 753-761, 1998.
    [16] Medtronic Inc., U.S.A., http://www.stealthstation.com/index.jsp
    [17] Nolte, L. P., Slomczykowski, M. A., Berlemann, U., Strauss, M. J., Hofstetter, R., Schlenzka, D., Laine, T., and Lund, T., “A new approach to computer-aided spine surgery:fluoroscopy-based surgical navigation,” Eur Spine J, Vol. 9, No. 7, S78–S88, 2000.
    [18] Orthosoft Inc., http://www.orthosoft.ca/html/mission_en.html
    [19] Papadopoulos, E. C., Girardi, F. P., Sama, A., Sandhu, H. S., and Cammisa, F. P. Jr, “Accuracy of single-time, multilevel registration in image-guided spinal surgery,” The Spine Journal, Vol. 5, pp. 263-268, 2005.
    [20] Russakoff, D. B., Rohlfing, T., Adler, J. R. Jr, and Maurer, C. R. Jr, “Intensity-based 2D-3D spine image registration incorporating a single fiducial marker,” Acad Radiol, Vol. 12, pp. 37-50, 2004.
    [21] Schroeder, W. J., Martin, K. M., The Visualization Toolkit 3nd Ed., Kitware, Inc., 1999.
    [22] Sugano, N., Sasama, T., Nakajima, Y., Sato, Y., et. al., “Effects of CT threshold value to make a surface bone model on accuracy of shape-based registration in a CT-based navigation system for hip surgery,” International Congress Series, Vol. 1230, pp. 319-324, 2001.
    [23] Zheng, G., Marx, A., Langlotz, U., et. al., “A hybrid CT-free navigation system for total hip arthroplasty,” Computer Aided Surgery, Vol. 7, pp. 129-145, 2002.
    [24] Zöllei, L., Grimson, E., Norbash, A., and Wells, W., “2D-3D rigid registration of X-ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators,” IEEE CVPR, Vol. 2, pp. 696-703, 2001.
    [25] 李訓銘, “電腦輔助骨科手術用規劃及導引系統”, 碩士論文, 中央大學機械工程研究所, 2000.
    [26] 陳鴻輝, “腦部手術用機械手規劃及導引系統”, 碩士論文, 中央大學機械工程研究所, 1999.
    [27] 顏兆萱, “全膝關節置換手術導引系統”, 碩士論文, 中央大學機械工程研究所, 2004.
    [28] 蔡明倫, “三度空間腦部結構校準”, 碩士論文, 交通大學資訊科學研究所, 2001.

    QR CODE
    :::