| 研究生: |
蔡承佑 TSAI CHENG-YU |
|---|---|
| 論文名稱: | Tensor product decomposition for finite dimensional sln(C)-modules. |
| 指導教授: | 彭勇寧 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 李代數 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
考慮兩個有限維不可分解的sl(n)-module 之張量積。Weyl's Theorem
保證我們可以將該張量積拆解成很多不可分解的子結構之直和。其中,我們將發現,
直和中各項的係數其實就是有名的Littlewood-Richardson coefficients。
Consider the tensor product of two finite dimensional irreducible sl(n)-modules. By
Weyl's Theorem, we can decompose the tensor product into a direct sum of irreducible
sl(n)-submodules. We will prove that the coefficients in the decomposition are actually the
well-known Littlewood-Richardson coefficients.
[GW] Roe Goodman Nolan R. Wallach
Symmetry, Representations, and Invariants,
Springer-Verlag, New York, 2009.
[H] Humphreys, J. E.
Introduction to Lie Algebras and Representation Theory,
Springer-Verlag, New York, 1972.
[S] Sagan, B. E.
The Symmetric Group, Representations, Combinatorial Algorithms, and Symmet-
ric Functions,
Springer-Verlag, New York, 2003.