跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴慶杰
Lai, Ching-Chieh
論文名稱: Change point estimation based on copula-based Markov chain model for binomial time series data
指導教授: 江村剛志
Takeshi Emura
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 77
中文關鍵詞: 馬可夫鏈
外文關鍵詞: Binomial time series data, attribute control chart, parametric bootstrap
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在序列分析中,改變點的偵測與估計是一典型的問題並且在品質管制中扮演重要的角色。本篇考慮了binomial CUSUM管制圖來偵測改變點。當binomial CUSUM管制圖偵測到改變點,樣本獨立的前提下最大概似估計量可用來估計改變點。然而獨立假設在品管上是存疑的。本篇我們建造了新的模型,我們將序列相關性納入考量,並利用copula-based Markov chain來描述此相關性。我們利用最大概似法求得估計量並建造我們的R套件來推廣我們的研究成果。區間估計我們用parametric bootstrap和大樣本近似兩種方法,並將兩者以模擬做比較。本篇比較了我們提出的方法與文獻中的方法並分析實務上的資料來展示我們的研究成果。


    Detection and estimation of a change point is a classical problem in sequential analysis, and is an important practical issue in statistical process control. This paper is concerned about the binomial CUSUM control chart for detecting a change point for attribute data, which is extensively applied to industrial process control, health care, public health surveillance, and other fields. If the binomial CUSUM chart detects a change point, a maximum likelihood estimator can be used to estimate the change point under the assumption that the observations are independent. However, the independence assumption is questionable in many applications of statistical process control. In this paper, we consider a new change point model, where the serial correlation follows a copula-based Markov chain model and the marginal distribution follows the binominal distribution. We develop algorithms for computing the maximum likelihood estimator, and implement them in our original R package. For interval estimation, we propose a parametric bootstrap procedure and an asymptotic normal approximation procedure. We compare the performance of the two interval estimation procedures by simulations. We also compare our proposed method with the existing estimators in terms of mean squared error. We analyze the jewelry manufacturing data for illustration.

    Chapter 1 Introduction…………….……………………………………………………………………1 Chapter 2 Background………………..…………………………………………………………………3 2.1 Settings and notations……………………………………………………………………………3 2.2. Binomial CUSUM control chart………………………………………………………………...4 2.3. Maximum likelihood estimator (MLE) of change point………………………………………5 2.4. Page’s last zero estimator………………...……………………………………………………...6 2.5. Combined estimator of MLE and last zero………...……………………………………………6 Chapter 3 Proposed method………..…………………………………………………………………...7 3.1 Copula……………………………………………………………………………………………7 3.2. Proposed change point model………………………………………………………………….10 3.3. Proposed estimator for change point………………………………………………………….15 3.4. Numerical maximization and convergence issue………………………………………………17 3.5. Asymptotic normal approximation…………………………………………………………….20 3.5. Confidence set for change point………………………………………………………………22 Chapter 4 Computation and software.…………………………………………………………….......24 4.1 Arguments in the function……………………………………………………………………...24 4.2 Illustration………………………………………………………………………………………26 Chapter 5 Simulation study.……………………………………………………………………….......29 5.1 Simulation designs……………………………………………………………………………...29 5.2 Results for comparing the NR method and the nlm method……………………………………30 5.3 Sensitivity of the proposed estimator under different assumed values of .………………...30 5.4 Results of comparing the Hessian and bootstrap methods……………………………………...31 5.5 Simulation results for comparing existing methods…………………………………………….35 Chapter 6 Data Analysis…...……………………………………………………………………….......41 6.1 Jewelry data…………………………………………………………………………………….41 6.2 Finance data…………………………………………………………………………………….46 Chapter 7 Conclusion…...………………………………………………………………………….......50 Acknowledgements…...…………………………………………………………………………….......50 References.………………………….………...……………………………………………….…….......51 Appendix A……………………………………………...…………………………………….…….......53 Appendix B-1.…………………………………………...…………………………………….…….......56 Appendix B-2.…………………………………………...…………………………………….…….......63 Appendix C.……………...……………………………...…………………………………….…….......64 Appendix D.……………...……………………………...…………………………………….…….......66

    Assareh, H., Smith, I., and Mengersen, K., 2015. Change point detection in risk adjusted control charts. Statistical Methods in Medical Reasearch 24, 747–768.
    Burr, W. I., 1979. Elementary Statistical Quality Control. Dekker, New York.
    Casella, G. and Berger, R. L., 2002. Statistical Inference. Duxbury, California.
    Dette, H. and Wied, D. 2016. Detecting relevant changes in time series models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78(2), 371-394.
    Duran, R. I. and Albin, S. L., 2009. Monitoring a fraction with easy and reliable settings of the false alarm rate. Quality and Reliability Engineering International 25, 1026-1043.
    Efron, B. and Tibshirani, R. J., 1993. An Introduction to the Bootstrap. Chapman & Hall, London.
    Emura, T. and Lin, Y. S., 2015. A comparison of normal approximation rules for attribute control charts. Quality and Reliability Enginerring International 31, 411–418.
    Emura, T., Chen, Y. H., and Chen, H. Y., 2012. Survival prediction based on compound covariate under cox proportional hazard models. PLoS ONE 7(10), e47627. doi:10.1371/journal.pone.0047627.
    Emura, T., Kao, F. S., and Michimae, H., 2014. An improved nonparametric estimator of sub-distribution function for bivariate competing risk models. Journal of Multivariate Analysis 132, 229-241.
    Emura, T. and Ho, Y. T., 2016. A decision theoretic approach to change point estimation for binomial CUSUM control charts. Sequential Analysis 35(2), 238-253.
    Emura, T. and Liao, Y. T., 2018. Critical review and comparison of continuity correction methods: the normal approximation to the binomial distribution. Communication in Statistics - Simulation and Computation 47(8), 2266-2285.
    Emura, T., Long, T. H., and Sun, L. H., 2017. R routines for performing estimation and statistical process control under copula-based time series model. Communication in Statistics - Simulation and Computation 46(4), 3067-3087.
    Faugeras, Olivier P., 2017. Inference for copula modeling of discrete data: a cautionary tale and some facts. Depend. Model 5(1), 121-132.
    Fuh, C. D. and Mei, Y., 2008. Optimal stationary binary quantizer for decentralized quickest change detection in hidden markov models. 11th International Conference on Information Fusion, Cologne, 1-8.
    Genest, C. and Nešlehová, J., 2007. A primer on copulas for count data. The Astin Bulletin 37, 475-515.
    Genest, C., Nešlehová, J., and Rémillard, B., 2017. Asymptotic behavior of the empirical multilinear copula process under broad conditions. Journal of Multivariate Analysis 159, 82-110.
    Genest, C. and MacKay, R. J., 1986. Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics 14(2), 145-159.
    Grigg, O. A., Farewell, V. T., and Spiegelhalter, D. J., 2003. Use of risk-adjusted CUSUM and RSPRT charts for monitoring in medical contexts. Statistical Methods in Medical Research 12, 147-170.
    Hawkins, D. M. and Olwell, D. H., 1998. Cumulative Sum Charts and Charting for Quality Improvement. Wiley, New York.
    Higgins, J. and Green, S., 2008. Cochrance Handbook for Systematic Reviews of Interventions. Wiley, New York.
    Hollander, M. and Wolfe, D. A., 1973. Nonparametric Statistical Methods. Wiley, New York.
    Huang, X. W., Chen, W. R. and Emura, T., 2019. A control chart using a copula-based Markov chain for attribute data. under revision.
    Huang, X. W. and Emura, T., 2019. Model diagnostic procedures for copula-based Markov chain models for statistical process control. Communication in Statistics - Simulation and Computation. doi: 10.1080/03610918.2019.1602647.
    Huang, X. W., Wang, W. and Emura, T., 2020. A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics and Data Science. under revision.
    James, W. and Stein, C., 1961. Estimation with quadratic loss. Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability 1, 361-379.
    Khan, R. A., 2008. Distributional properties of CUSUM stopping times. Sequential Analysis 27, 420-434.
    Khan, R. A. and Khan, M. K., 2004. On the use of the SPRT in determining the properties of some CUSUM procedures. Sequential Analysis 23, 355-378.
    Kim, J. M., Baik, J. and Reller, M., 2019. Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Communication in Statistics - Simulation and Computation. doi: 10.1080/03610918.2018.1547404.
    Knight. K., 2000. Mathematical Statistics. Chapman & Hall, New York.
    Kojadinovic, I., 2017. Some copula inference procedures adapted to the presence of ties. Computational Statistics & Data Analysis 112, 24-41.
    Laheetharan, A. and Wijekoon, P., 2010. Improved estimation of the population parameters when some additional information is available. Statistical Papers 51, 889-914.
    Lehmann, E. L., 1975. Nonparametric: Statistical Methods Based on Ranks. Holden-Day, San Francisco.
    Long, T. H. and Emura, T., 2014. A control chart using copula-based Markov chain models. Journal of the Chinese. Statistical Association 52, 466-496.
    McDonald, L., 2014. Does Newton−Raphson really fail? Stat Methods Med Res 23(3), 308-311.
    Montgomery, D. C., 2009. Introduction to Statistical Quality Control. Wiley, New York.
    Nagaraj, N. K., 1990. Two-sided tests for change in level for correlated data. Statistical Papers 31, 181-194.
    Nelsen, R. B., 2006. An Introduction to Copulas. Springer, New York.
    Page, E. S., 1954. Continuous inspection schemes. Biometrika 41, 100-114.
    Perry, M. B. and Pignatiello, J. J., 2008. A change point model for the location parameter of exponential family densities. IIE Transactions 40(10), 947-956.
    Perry, M. B. and Pignatiello, J. J., 2005. Estimation of the change point of the process fraction nonconforming in SPC applications. Interational Journal of Reliability Quality and Safety Engineering 12(02), 95-110.
    Perry, M. B., Pignatiello, J. J., and Simpson, J. R., 2007. Estimating the change point of the process fraction nonconforming with a monotonic change disturbance in SPC. Quality and Reliability Engineering Inernational 23, 327-339.
    Pignatiello, J. J. and Samuel, T. R., 2000. Identifying the time of a step change in the process fraction nonconforming. Quality Engineering 13(3), 357-365.
    Rossi, G., Sarto, S. D., and Marchi, M. A., 2014. New risk-adjusted Bernoulli cumulative sum chart for monitoring binary health data. Statistical Methods in Medical Reasearch. doi: 10.1177/0962280214530883.
    Sklar, A., 1959. Fonctions de re'partition a'n dimensions et leurs marges. Publica-tions de l'Intitut de Statistique de l'Universit de Paris 8, 229-231.
    Sun, L. H., Huang, X. W., Alqawba, M., Kim, J. M. and Emura, T., 2020. Copula-based Markov Models for Time Series-Parametric Inference and Process Control. Springer, New York.
    Teng, H. W. and Fuh, C. D., 2020. Simulating false alarm probability in K-distributed sea clutter. Communication in Statistics - Simulation and Computation. doi: 10.1080/03610918.2020.1757707.
    Wang, H., 2009. Comparison of p control charts for low defective rate. Computation Statistics & Data Analysis 53(12), 4210-4220.
    Wald, A., 1947. Sequential Analysis. Wiley, New York.
    Wetherill, G. B. and Brown, D. B., 1991. Statistical Process Control: Theory and Practice. Chapman and Hall, London.
    Wencheko, E. and Wijekoon, P., 2005. Improved estimation of the mean in one-parameter exponential families with known coefficient of variation. Statistical Papers 46, 101-115.

    QR CODE
    :::