跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝喬安
Chiao-An Hsieh
論文名稱: 溴苯、溴噻吩及其衍生物在金(111)之吸附
Adsorption of Bromobenzene, Bromothiophene, and Their Derivatives on Au(111)
指導教授: 姚學麟
姚學麟
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 130
中文關鍵詞: 掃描式穿隧顯微鏡循環伏安法金(111)溴苯溴噻吩電化學
外文關鍵詞: STM, CV, Au(111), Bromobenzene, Bromothiophene, electrochemistry
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合循環伏安法(Cyclic Voltammetry, CV)與原位掃描式穿隧顯微鏡(Scanning Tunneling Microscope, STM),系統性探討三類含溴有機分子於金(111)電極表面的吸附行為與電化學反應。
    首先,溴苯(Bromobenzene, BrB)吸附會立即破壞金(111)表面的重排結構,導致由(√3×22)相轉變為(1×1)相,並生成約 2.3 Å 深的原子坑洞。BrB 與金吸附原子(Au adatoms)作用為主要機制。隨電位提升,BrB 的排列由一維鏈狀轉為二維有序陣列,最終形成三維多層薄膜,吸附方向也由平躺轉為直立。負電位下薄膜可脫附,並且BrB會在更負的電位下還原分解。與硫酸相比,過氯酸環境下 BrB 展現出不同的排列與局部結構,顯示陰離子的角色對吸附組裝具關鍵影響。
    其次,2-溴噻吩(2-Bromothiophene, BrT)因具雙官能基(溴與硫),展現雙末端吸附特性。CV 觀察到 BrT 可抑制亞硫酸氫根(bisulfate)的吸附,STM 顯示其可導致金(111)重排結構消失,並依電位調變形成 (3×3)、(3×2√3)的有序排列;當電位高於 0.9 V 時,BrT 發生不可逆氧化聚合,生成寡聚噻吩鏈(Oligothiophene)。在負電位下,BrT也會發生不可逆的還原分解。過氯酸環境下 BrT依電位展現出不同的排列結構(4×√31)、(√7×√13) 。
    最後,對稱型有機分子 DTPPr-2Br、DTPPr-4Br 與 PPr-4Br,因極性趨近於0 D,主要透過π電子(π-electrons)與凡得瓦力吸附於金表面,其不會改變金(111)重排結構,正電位下形成穩定有序的多層薄膜,有利於鈣鈦礦太陽能電池中電荷傳輸。隨電位越正,其吸附結構會從有序轉換至無序;在負電位下發生脫附但並不會分解。


    This study combines cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) to systematically investigate the adsorption behavior and electrochemical reactivity of three types of organobromine molecules on Au(111) electrode surfaces.
    First, bromobenzene (BrB) adsorption instantly disrupts the reconstructed structure of Au(111), transforming it from the (√3×22) herringbone phase to the (1×1) structure and generating ~2.3 Å deep atomic pits. This transformation is primarily driven by interactions between BrB and Au adatoms. With increasing potential, BrB molecules transition from forming 1D chains to 2D ordered arrays, and eventually assemble into vertically aligned 3D multilayer films. Under negative potentials, the BrB film can desorb, and at more negative potentials, it undergoes irreversible reductive decomposition. Compared to sulfuric acid, BrB exhibits distinct local arrangements and packing behavior in perchloric acid, highlighting the critical role of electrolyte anions in interfacial molecular assembly.
    Second, 2-bromothiophene (BrT) features dual anchoring capability of BrT via its bromine and sulfur functional groups, CV results show that BrT suppresses bisulfate (HSO₄⁻) adsorption, while STM imaging reveals that it eliminates the Au(111) surface reconstruction and forms ordered structures such as (3×3) and (3×2√3) depending on the applied potential. At potentials above 0.9 V, BrT undergoes irreversible oxidative polymerization to form oligothiophene chains. At negative potentials, BrT also undergoes irreversible reductive decomposition. In perchloric acid, BrT assembles into dirrerent ordered phases, such as (4×√31) and (√7×√13), further emphasizing anion-dependent structural control.
    Lastly, symmetric organic molecules DTPPr-2Br, DTPPr-4Br, and PPr-4Br—with dipole moments approaching 0 D—adsorb onto Au(111) primarily through π-electron interactions and van der Waals forces. These molecules do not perturb the reconstructed gold surface. Under positive potentials, they form stable, ordered multilayer films conducive to charge transport in perovskite solar cells. As the potential increases further, the adsorbed layers become disordered. Under negative potentials, the molecules desorb without undergoing decomposition.

    摘要 i Abstract ii 誌謝 iv 目錄 v xii 表目錄 xiii 第一章、 緒論 1 1-1 芳香族鹵化物於金屬表面應用 1 1-1-1 烏爾曼偶聯反應Ullmann coupling 1 1-2 有機溴化物於金屬表面之吸附 3 1-3 自主裝單分子膜介紹 4 1-4 陰離子於金電極吸附之影響 5 1-5 研究動機 6 第二章、 實驗部分 7 2-1 藥品 7 2-2 有機分子結構圖 8 2-3 氣體與線材 10 2-4 儀器設備 11 2-4-1 循環伏安儀(Cyclic Voltammetry, CV) 11 2-4-2 掃描式穿隧電子顯微鏡(Scanning Tunneling Microscopy, STM) 11 2-4-3 超音波振盪器(Ultrasonic cleaner) 11 2-4-4 研磨拋光機(Grinder and Polisher) 11 2-5 實驗步驟 14 2-5-1 金(111)單晶電極製備(用於CV實驗) 14 2-5-2 循環伏安法(CV)實驗前處理 14 2-5-3 金(111)單晶電極製備(用於STM實驗) 14 2-5-4 STM探針製備 15 2-5-5 掃描式穿隧電子顯微鏡(STM)實驗前處理 15 第三章、 BrB在金(111)電極上的吸附 16 3-1 電位控制對Bromobenzene (BrB)吸附結構的影響 16 3-1-1 0.1 M H2SO4溶液中BrB於金(111)上的CV圖 16 3-1-2 0.1M H2SO4溶液中BrB吸附於金(111)上的STM圖 19 3-2 陰離子對Bromobenzene (BrB)吸附結構的影響 29 3-2-1 0.1 M過氯酸溶液中BrB於金(111)上的CV圖 29 3-2-2 0.1M過氯酸溶液中BrB於金(111)上的STM圖 31 3-3 浸泡濃度對Bromobenzene (BrB)吸附結構的影響 35 3-3-1 不同濃度在0.1 M H2SO4溶液溶液中BrB於金(111)上的CV圖 35 3-3-2 浸泡10-2M BrB於0.1M H2SO4溶液中的STM圖 37 3-3-3 浸泡10-1 M BrB於0.1M H2SO4溶液中的STM圖 41 3-4 pH值對Bromobenzene (BrB)吸附結構的影響 45 3-4-1 不同pH值硫酸溶液中BrB於金(111)上的CV圖 45 3-5 討論 47 3-5-1 BrB 在金(111) 表面的吸附層性質 47 3-5-2 BrB 誘導的表面重組:與硫醇吸附的比較 48 3-5-3 BrB 與金相互作用及表面覆蓋度估算 48 3-5-4 陰離子與電位在 BrB 吸附中的作用 48 3-5-5 電位驅使的相轉變與分子吸附位向變化 49 3-6 結論 50 第四章、 BrT在金(111)金(111)電極上的吸附 51 4-1 電位控制對Bromothiophene (BrT)吸附結構的影響 51 4-1-1 0.1M H2SO4溶液中BrT於金(111)上的CV圖 51 4-1-2 0.1M H2SO4溶液中BrT吸附於金(111)上的STM圖 54 4-2 陰離子對Bromothiophene (BrT)吸附結構的影響 62 4-2-1 0.1M過氯酸溶液中BrT於金(111)上的CV圖 62 4-2-2 0.1M HClO4溶液中BrT吸附於金(111)上的STM圖 64 4-3 pH值對Bromothiophene (BrT)吸附結構的影響 69 4-3-1 不同pH值硫酸溶液中BrT於金(111)上的CV圖 69 4-4 結論 71 4-4-1 陰離子對 BrT 吸附的影響 71 4-4-2 BrT 與 BrB 在金(111)的吸附行為 72 4-4-3 BrT 的陽極聚合 73 4-4-4 結論 74 第五章、 DTPPr-2Br、DTPPr-4Br、 PPr-4Br在金(111)電極上的吸附 76 5-1 電位控制對1,4-bis(4-bromophenyl)-2,5-di(thiophen-2-yl)-1,4-dihydropyrrolo[3,2-b]pyrrole (DTPPr-2Br)吸附結構的影響 76 5-1-1 0.1M H2SO4溶液中DTPPr-2Br於金(111)上的CV圖 76 5-1-2 0.1M H2SO4溶液中DTPPr-2Br吸附於金(111)上的STM圖 78 5-2 電位控制對1,4-bis(4-bromophenyl)-2,5-bis (5-bromothiophen-2-yl)-1,4-dihydropyrrolo[3,2-b]pyrrole (DTPPr-4Br)吸附結構的影響 85 5-2-1 0.1M H2SO4溶液中DTPPr-4Br於金(111)上的CV圖 85 5-2-2 0.1M H2SO4溶液中DTPPr-4Br吸附於金(111)上的STM圖 87 5-3 電位控制對1,2,4,5-tetrakis(4-bromophenyl)-1,3a,4,6a-tetrahydropyrrolo[3,2-b]pyrrole (PPr-4Br)吸附結構的影響 92 5-3-1 0.1M H2SO4溶液中PPr-4Br於金(111)上的CV圖 92 5-3-2 0.1M H2SO4溶液中PPr-4Br吸附於金(111)上的STM圖 94 5-4 結論 99 5-4-1 DTPPr-2Br、DTPPr-4Br、PPr-4Br在金(111) 表面的吸附層性質 99 5-4-2 DTPPr-2Br、DTPPr-4Br、PPr-4Br之CV圖比較 99 5-4-3 DTPPr-2Br、DTPPr-4Br、PPr-4Br與BrB、BrT的吸附比較 100 第六章、 總結 105 第七章、 參考文獻 107 第八章、 附錄 111 8-1 添加高濃度Bromobenzene (BrB)對吸附結構的影響 111 8-1-1 0.1 M H2SO4溶液中BrB於金(111)上的CV圖 111 8-1-2 0.1M H2SO4溶液中BrB吸附於金(111)上的STM圖 112

    1.C.M. Doyle, C. McGuinness, A.P. Lawless, A.B. Preobrajenski, N.A. Vinogradov, A.A. Cafolla, Surface Mediated Synthesis of 2D Covalent Organic Networks: 1,3,5-Tris(4-bromophenyl)benzene on Au(111), physica status solidi (b), 256 (2019) 1800349.
    2.Y. Li, X. Miao, G. Liu, Z. Li, L. Xu, W. Deng, Effect of Bromine and Substituted Alkyl Chain on the Interfacial Self-Assembly of Bromobenzene Derivatives by Scanning Tunneling Microscopy, J. Nanosci. Nanotechnol., 12 (2012) 179-186.
    3.G. Eder, E.F. Smith, I. Cebula, W.M. Heckl, P.H. Beton, M. Lackinger, Solution Preparation of Two-Dimensional Covalently Linked Networks by Polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111), ACS Nano, 7 (2013) 3014-3021.
    4.S. Grecchi, S. Arnaboldi, A.A. Isse, C. D'Aloi, A. Gennaro, P.R. Mussini, Electrocatalytic Reduction of Bromothiophenes vs Bromobenzenes on Gold and Silver Electrodes: Enhancement from S specific adsorption and modulation from substituent effects, Electrochim. Acta, 403 (2022) 139563.
    5.P. Gao, M.J. Weaver, Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes, J. Phys. Chem., 89 (1985) 5040-5046.
    6.A.F. Lee, Z. Chang, S.F.J. Hackett, A.D. Newman, K. Wilson, Hydrodebromination of Bromobenzene over Pt(111), J. Phys. Chem. C, 111 (2007) 10455-10460.
    7.S. Gu, S. Fu, C. Gong, S. Li, X. Liu, Y. Lu, Z. Wang, L. Wang, Directing on-surface polymerization via a substrate-directed molecular template, PCCP, 24 (2022) 3030-3034.
    8.M. Chen, J. Xiao, H.-P. Steinrück, S. Wang, W. Wang, N. Lin, W. Hieringer, J.M. Gottfried, Combined Photoemission and Scanning Tunneling Microscopy Study of the Surface-Assisted Ullmann Coupling Reaction, J. Phys. Chem. C, 118 (2014) 6820-6830.
    9.M. Lischka, M. Fritton, J. Eichhorn, V.S. Vyas, T. Strunskus, B.V. Lotsch, J. Björk, W.M. Heckl, M. Lackinger, On-Surface Polymerization of 1,6-Dibromo-3,8-diiodpyrene—A Comparative Study on Au(111) Versus Ag(111) by STM, XPS, and NEXAFS, J. Phys. Chem. C, 122 (2018) 5967-5977.
    10.M. Fritton, D.A. Duncan, P.S. Deimel, A. Rastgoo-Lahrood, F. Allegretti, J.V. Barth, W.M. Heckl, J. Björk, M. Lackinger, The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces, J. Am. Chem. Soc., 141 (2019) 4824-4832.
    11. J.F. King, W.A. Mitch, Electrochemical Reduction of Halogenated Alkanes and Alkenes Using Activated Carbon-Based Cathodes, Environ. Sci. Technol, 56 (2022) 17965-17976.
    12.P. Maksymovych, O. Voznyy, D.B. Dougherty, D.C. Sorescu, J.T. Yates, Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111), Prog. Surf. Sci., 85 (2010) 206-240.
    13.J. Song, D. Jańczewski, Y. Ma, L. van Ingen, C. Ee Sim, Q. Goh, J. Xu, G.J. Vancso, Electrochemically controlled release of molecular guests from redox responsive polymeric multilayers and devices, Eur. Polym. J., 49 (2013) 2477-2484.
    14.J. Song, D. Jańczewski, Y. Ma, M. Hempenius, J. Xu, G.J. Vancso, Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films, Journal of Materials Chemistry B, 1 (2013) 828-834.
    15.S. Vegiraju, X.-L. Luo, L.-H. Li, S.N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Solution Processable Pseudo n-Thienoacenes via Intramolecular S···S Lock for High Performance Organic Field Effect Transistors, Chem. Mater., 32 (2020) 1422-1429.
    16.J. Borges, J.F. Mano, Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers, Chem. Rev., 114 (2014) 8883-8942.
    17.K. Lowack, C.A. Helm, Molecular Mechanisms Controlling the Self-Assembly Process of Polyelectrolyte Multilayers, Macromolecules, 31 (1998) 823-833.
    18.A. Arcidiacono, B. Hanks, K. Hanson, Metal Ion-Linked Molecular Multilayers on Inorganic Substrates: Structure and Applications, ACS Applied Optical Materials, 1 (2023) 1156-1168.
    19.Kunitake, M.; Tanoue, R.; Higuchi, R.; Yoshimoto, S.; Haraguchi, R.; Uemura, S.; Kimizuka, N.; Stieg, A. Z.; Gimzewski, J. K., Monomolecular covalent honeycomb nanosheets produced by surface-mediated polycondensation between 1,3,5-triamino benzene and benzene-1,3,5-tricarbox aldehyde on Au(111). Nanoscale Adv. 2020, 2 (8), 3202-3208.
    20.Yoshimoto, S., Nanoscale Electrochemical Surface Science on Molecular Assembly and Surface Function. Electrochemistry 2023, 91 (10), 101003-101003.
    21.K. Itaya, In situ scanning tunneling microscopy in electrolyte solutions, Prog. Surf. Sci., 58 (1998) 121-247.
    22.J. Wang, A.J. Davenport, H.S. Isaacs, B.M. Ocko, Surface Charge—Induced Ordering of the Au(111) Surface, Science, 255 (1992) 1416-1418.
    23.D.M. Kolb, J. Schneider, Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2), Electrochim. Acta, 31 (1986) 929-936.
    24.G.J. Edens, X. Gao, M.J. Weaver, The adsorption of sulfate on gold(111) in acidic aqueous media: adlayer structural inferences from infrared spectroscopy and scanning tunneling microscope, J. Electroanal. Chem., 375 (1994) 357-366.
    25.O.M. Magnussen, J. Hageböck, J. Hotlos, R.J. Behm, In situ scanning tunnelling microscopy observations of a disorder–order phase transition in hydrogensulfate adlayers on Au(111), Faraday Discuss., 94 (1992) 329-338.
    26.L.-J. Wan, S.-L. Yau, K. Itaya, Atomic structure of adsorbed sulfate on Rh (111) in sulfuric acid solution, J. Phys. Chem., 99 (1995) 9507-9513.
    27.B.r. Braunschweig, W. Daum, Superstructures and order− disorder transition of sulfate adlayers on Pt (111) in sulfuric acid solution, Langmuir, 25 (2009) 11112-11120.
    28.P. Henkel, K.L.H. Pohl, D. Mollenhauer, Influence of the Coinage Metal(111) Surface on the Orientation of the σ Hole and the Halogen Bonding Strength of Bromo/Iodobenzene, J. Phys. Chem. C, 128 (2024) 5848-5859.
    29.R. Wen, G.-B. Pan, L.-J. Wan, Oriented Organic Islands and One-Dimensional Chains on a Au(111) Surface Fabricated by Electrodeposition: An STM Study, J. Am. Chem. Soc., 130 (2008) 12123-12127.
    30.P. Guaino, D. Carty, G. Hughes, O. McDonald, A.A. Cafolla, Long-range order in a multilayer organic film templated by a molecular-induced surface reconstruction: Pentacene on Au(110), Appl. Phys. Lett., 85 (2004) 2777-2779.
    31. F. Alonso, I.P. Beletskaya, M. Yus, Metal-Mediated Reductive Hydrodehalogenation of Organic Halides, Chem. Rev., 102 (2002) 4009-4092.
    32.C.-C. Chang, S.-L. Yau, J.-W. Tu, J.-S. Yang, Examination of the electrified interfaces of Au(111) in 0.1 M HClO4 containing organic iodide compounds with cyclic voltammetry and in situ scanning tunneling microscopy, Surf. Sci., 523 (2003) 59-67.
    33.Magnussen, Ocko, Adzić, Wang, X-ray diffraction studies of ordered chloride and bromide monolayers at the Au(111)-solution interface, Physical review. B, Condensed matter, 51 8 (1995) 5510-5513.
    34.A. Czerwiński, J. Sobkowski, The adsorption of chlorobenzene on the gold electrode, Electrochim. Acta, 25 (1980) 1313-1316.
    35.C. Bellomunno, D. Bonanomi, L. Falciola, M. Longhi, P.R. Mussini, L.M. Doubova, G. Di Silvestro, Building up an electrocatalytic activity scale of cathode materials for organic halide reductions, Electrochim. Acta, 50 (2005) 2331-2341.
    36.Y.-Y. Lou, J.-M. Fontmorin, A. Amrane, F. Fourcade, F. Geneste, Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review, Electrochim. Acta, 377 (2021) 138039.
    37.G.E. Poirier, Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy, Chem. Rev., 97 (1997) 1117-1128.
    38.M.M. Jobbins, A.F. Raigoza, S.A. Kandel, Adatoms at the Sulfur–Gold Interface in 1-Adamantanethiolate Monolayers, Studied Using Reaction with Hydrogen Atoms and Scanning Tunneling Microscopy, J. Phys. Chem. C, 115 (2011) 25437-25441.
    39.J. Dai, X. Zhao, Z. Peng, J. Li, Y. Lin, X. Wen, L. Xing, W. Zhao, J. Shang, Y. Wang, J. Liu, K. Wu, Assembling Surface Molecular Sierpiński Triangle Fractals via K+-Invoked Electrostatic Interaction, J. Am. Chem. Soc., 145 (2023) 13531-13536.
    40.Y.-C. Hsiao, A. Velusamy, S.N. Afraj, J.-H. Liu, C.-L. Liu, M.-C. Chen, H.-M. Kao, S. Yau, Potential and anion effects on the adsorption of 3′,4′-bis(hexylthio)-2,2′:5′,2′'-terthiophene on Au(111) electrode characterized by in situ STM, J. Electroanal. Chem., 944 (2023) 117646-117651.
    41.C. Chen, X.-P. Peng, S. Yau, The adsorption and electropolymerization of terthiophene on Au(111) electrode – Probed by in situ STM, J. Electroanal. Chem., 921 (2022) 116651-116656.
    42.M. Abe, T. Michi, A. Sato, T. Kondo, W. Zhou, S. Ye, K. Uosaki, Y. Sasaki, Electrochemically Controlled Layer-by-Layer Deposition of Metal-Cluster Molecular Multilayers on Gold, Angew. Chem. Int. Ed., 42 (2003) 2912-2915.
    43.L. Zhang, S. Li, W. Hu, First-principles investigation on adsorption of anchors on two-dimensional halide perovskite material, Appl. Surf. Sci., 604 (2022) 154527.
    44.L.-M. Mo, D.-D. Wei, W.-H. Xie, H.-M. Duan, L. Zhang, J. Zhao, C.-G. Li, S.-Y.-H. Ye, H.-Y. Wang, R. Cao, L.-Z. Wu, Prolonging Lifetime of Hot Electrons Integrated with Microenvironment Regulation on Atomically-Dispersed Amphiphilic Quantum Dots for Photo-Reductive Hydroarylation of Alkenes in Aqueous Solution, Appl. Catal. B: Environ., (2025) 125295.
    45.A. Balasubramanian, T.-C. Ku, H.-P. Shih, A. Suman, H.-J. Lin, T.-W. Shih, C.-C. Han, Chain-growth cationic polymerization of 2-halogenated thiophenes promoted by Brønsted acids, Polymer Chemistry, 5 (2014) 5928-5941

    QR CODE
    :::