| 研究生: |
謝維倫 Wei-Lun Hsieh |
|---|---|
| 論文名稱: |
鍺奈米線之研製以及高濃度矽鍺氧化機制探討 Fabrication of Germanium Nanowire and high concentration SiGe Oxidation Mechanism Study |
| 指導教授: |
李佩雯
Pei-Wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 選擇性氧化矽鍺 、奈米線電晶體 、鍺奈米線 |
| 外文關鍵詞: | selective oxidation SiGe, Ge nanowire, nanowire FET |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究探討以選擇性氧化矽鍺形成鍺量子點與奈米線之關鍵機制,進而提出平面氧化高濃度矽鍺的模型。藉由文獻以及實驗結果的輔助來證實此氧化模型的準確性,並且以此模型來估算形成更高濃度矽鍺層的氧化時間。以此平面氧化高濃度矽鍺模型作為出發點,進而可推導出平面及兩側壁三方向氧化高濃度矽鍺模型。利用電子束微影(electron beam lithography,EBL)以及氮化矽間隙壁的製程,我們實際製作出寬度26 ~ 116 nm的矽鍺奈米線,也觀察到由線轉變成點的過程與鍺濃度及細線的幾何尺寸有其相依關係。另外,由氧化矽鍺線實驗中觀察到,矽鍺細線氧化前的寬度、長度與氧化後所形成量子點位置及大小的關係。也從氧化矽鍺細線的實驗中觀察到高濃度矽鍺經長時間氧化後之情形以及說明矽鍺薄膜氧化時鍺鑽入氮化矽之機制。藉由以上的實驗說明高濃度矽鍺氧化機制,以利後續製作鍺奈米線電晶體以及鍺量子點之應用元件。
This thesis investigates the key mechanism of forming Ge-QDs or nanowire by the selective oxidaizing SiGe, then brings up the planar oxidation high concentration SiGe model. Through experimental data for assisting the accuracy of this model, we furthermore estimated the required oxidation time for forming higher concentration SiGe layer. Then we derived a three-directional oxidation model for forming high concentration SiGe. In fact, we have made SiGe nanowire width from 26 to 116 nm by EBL and Si3N4 spacer, also observed the transition process of transforming a SiGe wire into Ge-QDs, which are highly dependent on Ge concentration or wire’s geometry. The proposed oxidation model is applicable for fabricating Ge nanowire MOSFET and Ge-QDs application devices in the future.
[1] Scott E. Thompson, Mark Armstrong, Chis Auth, Mohsen Alavi, Mark Buehler, Robert Chau, Steve Cea, Tahir Ghani, Glenn Glass, Thomas Hoffman, Chia-Hong Jan, Chis Kenyon, Jason Klaus, Kelly Kuhn, Zhiyong Ma, Brian Mcintyre, Kaizad Mistvy, Anand Murthy, Borna Obradovic, Ramune Nagisetty, Phi Nguyen, Sam Sivakumar, Reaz Shaheed, Lucian Shifren, Bruce Tufts, Sunit Tyagi, Mark Bohr, and Youssef El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, p. 1790, 2004.
[2] Robert Chau, Boyan Boyanov, Brian Doyle, Mark Doczy, Suman Datta, Scott Hareland, Ben Jin, Jack Kavalieros, and Matthew Metz, “Silicon nano-transistors for logic applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 19, p. 1, 2003.
[3] B. Yu, X. H. Sun, G. A. Calebotta, G. R. Dholakia, and M. Meyyappan, “One-dimensional germanium nanowires for future electronics,” J. Clust. Sci., vol. 17, p. 579, 2006.
[4] Tejas Krishnamohan, Donghyun Kim, Chi Dong Nguyen, and Christoph Jungemann, “High-mobility low band-to-band-tunneling strained- germanium double-gate heterostructure FETs: simulations,” IEEE Trans. Electron Devices, vol. 53, p. 1000, 2006.
[5] B. Yu and M. Meyyappan, “Nanotechnology: role in emerging nanoelectronics,” Solid-State Electron., vol. 50, p. 536, 2006.
[6] Krishna Saraswat, Chi On Chui, Tejas Krishnamohan, Donghyun Kim, Ammar Nayfeh, and Abhijit Pethe, “High performance germanium MOSFETs,” Mater. Sci. Eng. B, vol. 135, p. 242, 2006.
[7] Y. Maeda, N. Tsukamoto and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., vol. 59, p. 3168, 1991.
[8] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., vol. 4, p. 89, 1964.
[9] J. R. Heath and F. K. Legcoucs, “A liquid solution synthesis of single-crystal germanium quantum wires,” Chem. Phys. Lett., vol. 208, p. 263, 1993.
[10] Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Amer. Chem. Soc., vol. 123, p. 3165, 2001.
[11] G. M. Cohen, M. J. Rooks, J. O. Chu, S. E. Laux, P. M. Solomon, J. A. Ott, R. J. Miller, and W. Haensch, “Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain,” Appl. Phys. Lett., vol. 90, p. 233110, 2007.
[12] 吳佳緯,「鍺奈米線與矽奈米線電晶體之研製」,國立中央大學,碩士論文,民國九十八年。
[13] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effect of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, p. 1200, 1991.
[14] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnol., vol. 18, p. 145402, 2007.
[15] Cao M., Wang A., and Saraswat KC, “Low Pressure Chemical Vapor Deposition of Si1-xGex Films on SiO2 Characterization and Modeling,” Journal of the electrochemical society, vol. 142, p. 1566-1572, 1995.
[16] Rodriguez A., Ortiz MI, Sangrador J., Rodrihuez T., Avella M., Prieto A. C., Terres A., Jimenez J., Kling A., and Ballesteros C., ”Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films,” Nanotechnol. vol. 18, p. 065702, 2007.
[17] P. W. Li, W. M. Liao, and S. W. Lin, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., vol. 83, p. 4628, 2003.
[18] Ma XB., Liu WL., Chen C., Du XF., Liu XY., Song ZH., and Lin CL., ”Fabrication of high Ge content SiGe-on-insulator with low dislocation density by modified Ge condensation,” Applied Surface Science, vol. 255, p. 7743-7748, 2007.
[19] Balakumar S., Peng S., Hoe KM, A. Agarwal, G. Q. Lo, R. Kumar, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “SiGeO layer formation mechanism at the SiGe/oxide interfaces during Ge condensation,” Appl. Phys. Lett., vol. 90, p. 032111, 2007.
[20] 曾柏皓,「鍺量子點嵌入氮化矽/二氧化矽/氮化矽層之浮點電晶體研製」,國立中央大學,碩士論文,民國九十九年。
[21] James D. Plummer, Michael D. Deal, and Peter B. Griffin, “Silicon VLSI Technology:Fundamental, Practice and Modeling,” CH6, p. 317-319, 2005.
[22] Kim SY, Lee HJ, and Ko DH, “Agglomeration of Cylindrically Condensed Cores in Si1-xGex Nanowires by Oxidation,” Electrochemical and Solid State Letters, vol. 13, p. K57-K9, 2010.
[23] 陳柏翰,「高鍺濃度薄膜實驗」,國立中央大學,碩士班,民國九十九年。
[24] Y. R. Chang, C.Y. Chien, S. W. Lee, and P. W. Li, “Influence of host dielectrics on the formation of Ge quantum dots/wires in silicon oxide and silicon nitride matrices and associated optical and thermal properties,” unpublished.