跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡孟廷
Meng-ting Tsai
論文名稱: 指叉電極檢測系統以阻抗分析方式檢測老鼠纖維組織細胞L929的新陳代謝及增殖
Impedance analysis of metabolism and proliferation of mouse fibroblast cells L929 by a portable interdigitated microelectrodes detection system
指導教授: 蔡章仁
Jang-zern Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 136
中文關鍵詞: 阻抗量測細胞培養電雙層指叉電極
外文關鍵詞: double layer, cell culture, impedance measurement, interdigitated electrode
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用指叉型電極來檢測老鼠纖維母細胞L929生長代謝及分裂後時阻抗的變化。指叉型電極利用微影製程的方式製作,電極尺寸為500um x 8um x 50nm。本研究將L929附著於生物感測晶片上,然後量測不同濃度及不同生長情況下阻抗變化情況。在進行阻抗量測前,會先於感測晶片表面上一層Poly-L-lysine使細胞更容易貼附。初步結果為不同細胞數量相對造成不同的阻抗變化,其原因為細胞代謝物會影響電雙層電容的變化。為了達到方便及快速檢測,本研究利用微控制器、生物感測晶片及阻抗量測元件 AD5933來發展簡易的阻抗量測系統。利用此阻抗量測系統初步可以觀察到在不同細胞濃度下其代謝對阻抗造成的變化。因此,此生物檢測系統利用阻抗量測方式確實對於細胞代謝的量測提供一個有效的分析方式。


    Interdigitated microelectrodes were used to monitor the growth of L929 cells during metabolism and proliferation. The interdigitated microelectrodes were fabricated with microfabrication technology with 8μm of width, 8μm of gap, and 500μm of length for each electrode. In this study, the mouse fibroblast cells L929 was cultured on the electrodes surface with pre-coated poly-L-lysine. The impedance change in the interdigitated electrode pair was measured during cells adhesion, spreading, and proliferation. The experimental results show that cells concentration increase could affect the impedance change because the cell’s metabolite correlated to the double layer capacitance between the electrodes and the cells. Further, to develop a portable and fast detection device, we built an impedance detection system using a microprocessor, the impedance convertor AD5933, and the interdigitated microelectrodes chip. Using this impedance detection system can prove to observe metabolism of different concentration for cells growth stage. Thus, this cell-growth monitor system by impedance measurement provides a useful analytical method for cells metabolism.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 生物感測器介紹 2 1-2-1 歷史發展 2 1-2-2 定義及構成 3 1-2-3 類型及偵測原理 4 1-3交流阻抗分析背景 10 1-4 阻抗感測器的量測特性 12 1-5 指叉型電極介紹 13 1-6 細胞生理特性介紹 16 1-6-1細胞結構 16 1-6-2 分子穿越細胞膜的移動 19 1-6-3 細胞生長周期 22 1-6-4細胞衰老與凋亡 23 第二章 研究背景 25 2-1 研究動機 25 2-2 研究目標 26 第三章 阻抗式感測器製作及實驗方法 28 3-1 阻抗式感測晶片製作 28 3-1-1感測晶片設計 28 3-1-2感測晶片材料選用 31 3-1-3實驗材料及儀器設備 31 3-1-3-1 實驗材料 31 3-1-3-2 儀器設備 31 3-1-4 製程步驟與相關參數 34 3-2 細胞培養 39 3-2-1 細胞培養藥劑、材料及使用設備 40 3-2-1-1 細胞培養藥劑及材料 40 3-2-1-2 實驗設備 40 3-2-2 培養方法及步驟 43 3-2-3 細胞計數方法 44 3-3 細胞阻抗量測實驗 45 3-3-1 培養方法及步驟 47 3-3-2 IM6-ex量測實驗 48 3-3-2-1 電路量測方式及相關參數 48 3-3-2-2 等效電路設計 49 3-3-3 AD5933 量測實驗 53 3-3-3-1 電路量測原理 53 3-3-3-2 AD5933 Demo board量測程式操作說明 59 3-3-3-3 自製電路設計及量測原理 60 3-3-3-4 量測程式設計 65 第四章 結果與討論 67 4-1 製程結果分析 67 4-2 晶片品質及特性分析 70 4-2-1 電容特性 70 4-2-2 交流阻抗特性 72 4-2-2-1 溶液下等效電路探討 72 4-2-2-2 不同溶液下阻抗分析 74 4-2-2-3 等效電路fitting結果 77 4-3 阻抗式量測電路整合結果 78 4-3-1量測電路實現 78 4-3-2 PC端程式測試 80 4-4 細胞阻抗量測結果 82 4-4-1 細胞吸附情況 82 4-4-2 IM6-ex量測結果 83 4-4-2-1 細胞生長曲線阻抗量測結果 85 4-4-2-2 擬合阻抗量測結果 92 4-4-2-3 細胞濃度阻抗量測分析 96 4-4-2-4 細胞活性及代謝測試 100 4-4-3 AD5933 Evaluation Board量測結果 100 4-4-3-1 細胞生長曲線阻抗量測結果 102 4-4-3-2 細胞濃度阻抗量測分析 104 4-4-4 自製電路量測結果 105 4-4-4-1 細胞生長曲線阻抗量測結果 107 4-4-4-2 細胞濃度阻抗量測分析 108 第五章 結論 110 未來展望 113 參考文獻 114

    [1]財團法人國家實驗研究院科技政策研究與資訊中心,2005年市場報告,來源:Helmut Kaiser Consultancy 2004
    2009年6月20日取自:http://cdnet.stpi.org.tw/techroom/market/bio/bio033.htm
    [2]物理雙月刊廿八卷四期 (2006年8月),704-710
    [3]O. Niwa, M. Morita, H. Tabei, Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: consideration of redox cycling and collection efficiency, Analytical Chemistry 62 (1990), 447–452.
    [4]O. Niwa, M. Morita, H. Tabei, Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes, Electroanalysis 3 (1991), 163-168.
    [5]S.D. House, L.B. Anderson, Mass spectral analysis of electrochemical products generated directly within the MS source vacuum, Analytical Chemistry 66(1994), 193-199.
    [6]J.H. Yeon, J.K. Park, Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip, Analytical Biochemistry 341 (2005) 308-315.
    [7]M. Guo, J. Chen, X. Yun, K. Chen, L. Nie, S. Yao, Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy, Biochimica et Biophysica Acta 1760 (2006) 432-439.
    [8]S. Arndt, J. Seebach, K. Psathaki, H.J. Galla, J. Wegener, Bioelectrical impedance assay to monitor changes in cell shape during apoptosis, Biosensors and Bioelectronics 19 (2004) 583-594.
    [9]N.N. Mishra, S. Retterer, T.J. Zieziulewicz, M. Isaacson, D. Szarowski, D.E. Mousseau, D.A. Lawrence, J.N. Turner, On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis, Biosensors and Bioelectronics 21 (2005) 696-704.
    [10]A. Bouafsoun, A. Othmane, N. Jaffrezic-Renault, A. Kerkeni, O. Thoumire, A.F. Prigent, L. Ponsonnet, Impedance endothelial cell biosensor for lipopolysaccharide detetion, Materials Science and Engineering C 28 (2008) 653-661.
    [11]P. Wolf, A. Rotherme, AG. Beck-sickinger, A.A. Robitzki, Microelectrode chip based real time monitoring of vital MCF-7 mamma carcinoma cells by impedance spectroscopy, Biosensors and Bioelectronics 24 (2008) 253-259.
    [12]X. Huang, D.W. Greve, D.D. Nguyen, M.M. Domach, Impedance based biosensor array for monitoring mammalian cell behavior, IEEE Sensors 1 (2003) 304-309.
    [13]M. Brischwein, S. Herrmann, W. Vonau, F. Berthold, H. Grothe, E.R. Motrescu, B. Wolf, The use of screen printed electrodes for the sensing of cell responses, AFRICON 2007 1-5.
    [14]S. Rodrigues, N. Munichandraiah, A.K. Shukla, A review of state-of-charge indication of batteries by means of a.c. impedance measurements. Journal of Power Sources 87 (2000), 12-20.
    [15]K. Bandyopadhyay, K. Vijayamohanan , G.S. Shekhawat , Ram. P. Gupta, Impedance analysis of self-assembled naphthalene disulfide monolayer on gold using external redox probes., Electroanalytical Chemistry 447(1998), 11-16.
    [16]E. Boubour, R.B.Lennox, Insulating properties of self-assembled monolayers monitored by impedance spectroscopy. Langmuir 16 (2000), 4222-4228.
    [17]A. Zrimec, I. Jerman, G. Lahajnar, Low frequency alternating electric fields inhibit lactose uptake in Kluyveromyces marxianus. Bioelectrochemistry and Bioenergetics 48 (1999), 481-484.
    [18]C. Ruan, L. Yang, Y. Li, Immunobiosensor Chips for Detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy, Analytical Chemistry 74 (2002) 4814-4820.
    [19]S.M. Radke, E.C. Alocilja, A microfabricated biosensor for detecting foodborne bioterrorism agents, IEEE Sensors Journal 5 (2005) 744-750.
    [20]C. Ruan, L. Yang, Y. Li, Immunobiosensor Chips for Detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy, Analytical Chemistry 74 (2002) 4814-4820.
    [21]S.M. Radke, E.C. Alocilja, A microfabricated biosensor for detecting foodborne bioterrorism agents, IEEE Sensors Journal 5 (2005) 744-750.
    [22]L. Bang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7, Bosensors and Bioelectronics 20 (2005) 1407-1416.
    [23]M. Varshney, Y. Li, Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium Talanta 74 (2008) 518-525.
    [24]L. Yang, Y. Li, Gisela F. Erf, Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7, Analytical Chemistry 76 (2004) 1107-1113.
    [25]L. Yang, Y. Li, C.L. Griffis, M.G. Johnson, Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium, Biosensors and Bioelectronics 19 (2004) 1139-1147.
    [26]M. Varshney, Y. Li, B. Srinivasan, S. Tung, A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples, Sensors and Actuators B 128 (2007) 99-107.
    [27]M. Varshney, Y. Lin, Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples, Biosensors and Bioelectronics 22 (2007) 2408-2414.
    [28]L. Yang, Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes, Talanta 74 (2008) 1621-1629.
    [29]D. Berdat, A. Marin, F. Herrera, M.A.M. Gijs, DNA biosensor using fluorescence microscopy and impedance spectroscopy, Sensors and Actuators B 118 (2006) 53-59.
    [30]T.C. Hang, A Guiseppi-Elie, Frequency dependent and surface characterization of DNA immobilization and hybridization, Biosensors and Bioelectronics 19 (2004) 1537-1548.
    [31]R. de la Rica, C. Fernandez-Sanchez, A. Baldi, Polysilicon interdigitated electrodes as impedimetric sensors, Electrochemistry Communications 8 (2006) 1239-1244
    [32]M. Cortina, M.J. Esplandiu, S. Alegret, M. del Valle, Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes, Sensors and Actuators B 118 (2006) 84-89.
    [33]C. Xiao, B. Lachance, G. Sunahara, An In-Depth Analysis of Electric Cell−Substrate Impedance Sensing To Study the Attachment and Spreading of Mammalian Cells, Analytical Chemistry 74 (2002), 1333–1339
    [34]J.H.T. Luong, M. Habibi-Razaei, J. Meghrous, C. Xiao, K.B. Male, A. Kamen, Monitoring Motility, Spreading, and Mortality of Adherent Insect Cells Using an Impedance Sensor, Analytical Chemistry 73 (2001), 1844-1848.
    [35]R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures, Med. Biol. Eng. Comput. 36 (1998), 365-370.
    [36]G. Tlili, Fibroblast Cell: A Sensing Bioelement for Glucose Detection by Impedance Spectroscopy. Analytical Chemistry 75 (2003), 3340-3344.
    [37]J.G. Guan, Y.Q., Miao, Q.J. Zhang, Impedimetric biosensors., Bioscience and Bioengineering 97 (2004), 219–226.
    [38]L.F. Vesga, E. Vera, J.H. Panqueva,. Use of the electrochemical impedance spectroscopy to evaluate the performance of a primer applied under different surface prepatation methods. Progress in organic coatings 39 (2000), 61-65.
    [39]L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, I. Willner, Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosensors and bioelectronics 16 (2001), 675-687.
    [40]R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectrons. 12 (1997), 29–41.
    [41]M. Morita, O. Niwa, T. Horiuchi,. Interdigitated array microelectrodes as electrochemical sensors., Electrochim. Acta 42 (1997), 3177–3183.
    [42]A.E. Cohen, R.R. Kunz, Large-area interdigitated array microelectrodes for electrochemical sensing., Sensors and Actuators B 62 (2000), 23–29.
    [43]S.K. Kim, P.J. Hesketh, C. Li, Thomas, J.H., Halsall, H.B., Heineman, W.R., Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosensors and Bioelectrons. 20 (2004), 887–894.
    [44]B.W. Chang, C.H. Chen, S.J. Ding, D.C.H. Chen, H.C. Chang, Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sensors and Actuators B 105 (2005), 159–163.
    [45]R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, B. Wolf, On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures., Medical and Biological Engineering and Computing 36 (1998), 365–370.
    [46]P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O.D. Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, R. Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors and Actuators B 49 (1998) 73-80.
    [47]W. Xuejiang, S.V. Dzyadevych, J.M. Chovelon, M.J. Renault, C. Ling, X. Siqing, Z. Jianfu, Conductometric nitrate biosensor based on methyl viologen/Nafion/nitrate reductase interdigitated electrodes, Talanta 69 (2006) 450-455.
    [48]W. Qu, W. Wlodarski, A thin-film sensing element for ozone, humidity and temperature, Sensors and Actuators B 64 (2000) 42-48.
    [49]K. Arshak, I. Gaidan, Development of a novel gas sensor based on oxide thick films, Materials Science and Engineering B 118 (2005) 44-49.
    [50]G. Xie, J. Yu, X. Chen, Y. Jiang, Gas sensing characteristics of WO3 vacuum deposited thin films, Sensors and Actuators B 123 (2007) 909-914.
    [51]潘震澤、楊志剛、高毓儒、黃娟娟、袁宗凡、謝坤叡,人體生理學,第三版,台灣台北:合記圖書出版社,2005。
    [52]國立交通大學生物資訊研究所,台聯大生命科學課程改進計畫教學資料。
    [53]W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnee, J.-J. Pireaux, G. Maes, Nanoscaled interdigitated titanium electrodes for impedimetric biosensing, Sensors and Actuators B 68 (2000) 360-370.
    [54]C.C. Lin, L.C. Chen, C.H. Huang, S.J. Ding, C.C. Chang, H.C. Chang, Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection, Electroanalytical Chemistry 619-620(2008), 39-45.
    [55]Q. Liu, J. Yu, L. Xiao, J.C.O. Tang, Y. Zhang, P. Wang, M. Yang, Impedance studies of bio-behavior and chemosensitivity of cancer cells by Micro-electrode arrays, Biosensors and Bioelectronics 24 (2009) 1305-1310.
    [56]Analog Devices Inc., Analog Dialogue 38(2004), 1-5.
    [57]Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement, Sensors and Actuators A 136 (2007), 518-526.
    [58]T. Kawai, T. Kubota, J. Hiraki, Y. Izumi, Biosynthesis of ε-poly-L-lysine in a cell-free system of Streptomyces albulus, Biochemical and Biophysical Research Communications 311 (2003), 635–640.
    [59]吳浩青、李永舫,電化學動力學,科技圖書出版社,2001。

    QR CODE
    :::