| 研究生: |
蔡孟廷 Meng-ting Tsai |
|---|---|
| 論文名稱: |
指叉電極檢測系統以阻抗分析方式檢測老鼠纖維組織細胞L929的新陳代謝及增殖 Impedance analysis of metabolism and proliferation of mouse fibroblast cells L929 by a portable interdigitated microelectrodes detection system |
| 指導教授: |
蔡章仁
Jang-zern Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 阻抗量測 、細胞培養 、電雙層 、指叉電極 |
| 外文關鍵詞: | double layer, cell culture, impedance measurement, interdigitated electrode |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用指叉型電極來檢測老鼠纖維母細胞L929生長代謝及分裂後時阻抗的變化。指叉型電極利用微影製程的方式製作,電極尺寸為500um x 8um x 50nm。本研究將L929附著於生物感測晶片上,然後量測不同濃度及不同生長情況下阻抗變化情況。在進行阻抗量測前,會先於感測晶片表面上一層Poly-L-lysine使細胞更容易貼附。初步結果為不同細胞數量相對造成不同的阻抗變化,其原因為細胞代謝物會影響電雙層電容的變化。為了達到方便及快速檢測,本研究利用微控制器、生物感測晶片及阻抗量測元件 AD5933來發展簡易的阻抗量測系統。利用此阻抗量測系統初步可以觀察到在不同細胞濃度下其代謝對阻抗造成的變化。因此,此生物檢測系統利用阻抗量測方式確實對於細胞代謝的量測提供一個有效的分析方式。
Interdigitated microelectrodes were used to monitor the growth of L929 cells during metabolism and proliferation. The interdigitated microelectrodes were fabricated with microfabrication technology with 8μm of width, 8μm of gap, and 500μm of length for each electrode. In this study, the mouse fibroblast cells L929 was cultured on the electrodes surface with pre-coated poly-L-lysine. The impedance change in the interdigitated electrode pair was measured during cells adhesion, spreading, and proliferation. The experimental results show that cells concentration increase could affect the impedance change because the cell’s metabolite correlated to the double layer capacitance between the electrodes and the cells. Further, to develop a portable and fast detection device, we built an impedance detection system using a microprocessor, the impedance convertor AD5933, and the interdigitated microelectrodes chip. Using this impedance detection system can prove to observe metabolism of different concentration for cells growth stage. Thus, this cell-growth monitor system by impedance measurement provides a useful analytical method for cells metabolism.
[1]財團法人國家實驗研究院科技政策研究與資訊中心,2005年市場報告,來源:Helmut Kaiser Consultancy 2004
2009年6月20日取自:http://cdnet.stpi.org.tw/techroom/market/bio/bio033.htm
[2]物理雙月刊廿八卷四期 (2006年8月),704-710
[3]O. Niwa, M. Morita, H. Tabei, Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: consideration of redox cycling and collection efficiency, Analytical Chemistry 62 (1990), 447–452.
[4]O. Niwa, M. Morita, H. Tabei, Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes, Electroanalysis 3 (1991), 163-168.
[5]S.D. House, L.B. Anderson, Mass spectral analysis of electrochemical products generated directly within the MS source vacuum, Analytical Chemistry 66(1994), 193-199.
[6]J.H. Yeon, J.K. Park, Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip, Analytical Biochemistry 341 (2005) 308-315.
[7]M. Guo, J. Chen, X. Yun, K. Chen, L. Nie, S. Yao, Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy, Biochimica et Biophysica Acta 1760 (2006) 432-439.
[8]S. Arndt, J. Seebach, K. Psathaki, H.J. Galla, J. Wegener, Bioelectrical impedance assay to monitor changes in cell shape during apoptosis, Biosensors and Bioelectronics 19 (2004) 583-594.
[9]N.N. Mishra, S. Retterer, T.J. Zieziulewicz, M. Isaacson, D. Szarowski, D.E. Mousseau, D.A. Lawrence, J.N. Turner, On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis, Biosensors and Bioelectronics 21 (2005) 696-704.
[10]A. Bouafsoun, A. Othmane, N. Jaffrezic-Renault, A. Kerkeni, O. Thoumire, A.F. Prigent, L. Ponsonnet, Impedance endothelial cell biosensor for lipopolysaccharide detetion, Materials Science and Engineering C 28 (2008) 653-661.
[11]P. Wolf, A. Rotherme, AG. Beck-sickinger, A.A. Robitzki, Microelectrode chip based real time monitoring of vital MCF-7 mamma carcinoma cells by impedance spectroscopy, Biosensors and Bioelectronics 24 (2008) 253-259.
[12]X. Huang, D.W. Greve, D.D. Nguyen, M.M. Domach, Impedance based biosensor array for monitoring mammalian cell behavior, IEEE Sensors 1 (2003) 304-309.
[13]M. Brischwein, S. Herrmann, W. Vonau, F. Berthold, H. Grothe, E.R. Motrescu, B. Wolf, The use of screen printed electrodes for the sensing of cell responses, AFRICON 2007 1-5.
[14]S. Rodrigues, N. Munichandraiah, A.K. Shukla, A review of state-of-charge indication of batteries by means of a.c. impedance measurements. Journal of Power Sources 87 (2000), 12-20.
[15]K. Bandyopadhyay, K. Vijayamohanan , G.S. Shekhawat , Ram. P. Gupta, Impedance analysis of self-assembled naphthalene disulfide monolayer on gold using external redox probes., Electroanalytical Chemistry 447(1998), 11-16.
[16]E. Boubour, R.B.Lennox, Insulating properties of self-assembled monolayers monitored by impedance spectroscopy. Langmuir 16 (2000), 4222-4228.
[17]A. Zrimec, I. Jerman, G. Lahajnar, Low frequency alternating electric fields inhibit lactose uptake in Kluyveromyces marxianus. Bioelectrochemistry and Bioenergetics 48 (1999), 481-484.
[18]C. Ruan, L. Yang, Y. Li, Immunobiosensor Chips for Detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy, Analytical Chemistry 74 (2002) 4814-4820.
[19]S.M. Radke, E.C. Alocilja, A microfabricated biosensor for detecting foodborne bioterrorism agents, IEEE Sensors Journal 5 (2005) 744-750.
[20]C. Ruan, L. Yang, Y. Li, Immunobiosensor Chips for Detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy, Analytical Chemistry 74 (2002) 4814-4820.
[21]S.M. Radke, E.C. Alocilja, A microfabricated biosensor for detecting foodborne bioterrorism agents, IEEE Sensors Journal 5 (2005) 744-750.
[22]L. Bang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7, Bosensors and Bioelectronics 20 (2005) 1407-1416.
[23]M. Varshney, Y. Li, Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium Talanta 74 (2008) 518-525.
[24]L. Yang, Y. Li, Gisela F. Erf, Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7, Analytical Chemistry 76 (2004) 1107-1113.
[25]L. Yang, Y. Li, C.L. Griffis, M.G. Johnson, Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium, Biosensors and Bioelectronics 19 (2004) 1139-1147.
[26]M. Varshney, Y. Li, B. Srinivasan, S. Tung, A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples, Sensors and Actuators B 128 (2007) 99-107.
[27]M. Varshney, Y. Lin, Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples, Biosensors and Bioelectronics 22 (2007) 2408-2414.
[28]L. Yang, Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes, Talanta 74 (2008) 1621-1629.
[29]D. Berdat, A. Marin, F. Herrera, M.A.M. Gijs, DNA biosensor using fluorescence microscopy and impedance spectroscopy, Sensors and Actuators B 118 (2006) 53-59.
[30]T.C. Hang, A Guiseppi-Elie, Frequency dependent and surface characterization of DNA immobilization and hybridization, Biosensors and Bioelectronics 19 (2004) 1537-1548.
[31]R. de la Rica, C. Fernandez-Sanchez, A. Baldi, Polysilicon interdigitated electrodes as impedimetric sensors, Electrochemistry Communications 8 (2006) 1239-1244
[32]M. Cortina, M.J. Esplandiu, S. Alegret, M. del Valle, Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes, Sensors and Actuators B 118 (2006) 84-89.
[33]C. Xiao, B. Lachance, G. Sunahara, An In-Depth Analysis of Electric Cell−Substrate Impedance Sensing To Study the Attachment and Spreading of Mammalian Cells, Analytical Chemistry 74 (2002), 1333–1339
[34]J.H.T. Luong, M. Habibi-Razaei, J. Meghrous, C. Xiao, K.B. Male, A. Kamen, Monitoring Motility, Spreading, and Mortality of Adherent Insect Cells Using an Impedance Sensor, Analytical Chemistry 73 (2001), 1844-1848.
[35]R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures, Med. Biol. Eng. Comput. 36 (1998), 365-370.
[36]G. Tlili, Fibroblast Cell: A Sensing Bioelement for Glucose Detection by Impedance Spectroscopy. Analytical Chemistry 75 (2003), 3340-3344.
[37]J.G. Guan, Y.Q., Miao, Q.J. Zhang, Impedimetric biosensors., Bioscience and Bioengineering 97 (2004), 219–226.
[38]L.F. Vesga, E. Vera, J.H. Panqueva,. Use of the electrochemical impedance spectroscopy to evaluate the performance of a primer applied under different surface prepatation methods. Progress in organic coatings 39 (2000), 61-65.
[39]L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, I. Willner, Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosensors and bioelectronics 16 (2001), 675-687.
[40]R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectrons. 12 (1997), 29–41.
[41]M. Morita, O. Niwa, T. Horiuchi,. Interdigitated array microelectrodes as electrochemical sensors., Electrochim. Acta 42 (1997), 3177–3183.
[42]A.E. Cohen, R.R. Kunz, Large-area interdigitated array microelectrodes for electrochemical sensing., Sensors and Actuators B 62 (2000), 23–29.
[43]S.K. Kim, P.J. Hesketh, C. Li, Thomas, J.H., Halsall, H.B., Heineman, W.R., Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosensors and Bioelectrons. 20 (2004), 887–894.
[44]B.W. Chang, C.H. Chen, S.J. Ding, D.C.H. Chen, H.C. Chang, Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sensors and Actuators B 105 (2005), 159–163.
[45]R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, B. Wolf, On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures., Medical and Biological Engineering and Computing 36 (1998), 365–370.
[46]P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O.D. Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, R. Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors and Actuators B 49 (1998) 73-80.
[47]W. Xuejiang, S.V. Dzyadevych, J.M. Chovelon, M.J. Renault, C. Ling, X. Siqing, Z. Jianfu, Conductometric nitrate biosensor based on methyl viologen/Nafion/nitrate reductase interdigitated electrodes, Talanta 69 (2006) 450-455.
[48]W. Qu, W. Wlodarski, A thin-film sensing element for ozone, humidity and temperature, Sensors and Actuators B 64 (2000) 42-48.
[49]K. Arshak, I. Gaidan, Development of a novel gas sensor based on oxide thick films, Materials Science and Engineering B 118 (2005) 44-49.
[50]G. Xie, J. Yu, X. Chen, Y. Jiang, Gas sensing characteristics of WO3 vacuum deposited thin films, Sensors and Actuators B 123 (2007) 909-914.
[51]潘震澤、楊志剛、高毓儒、黃娟娟、袁宗凡、謝坤叡,人體生理學,第三版,台灣台北:合記圖書出版社,2005。
[52]國立交通大學生物資訊研究所,台聯大生命科學課程改進計畫教學資料。
[53]W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnee, J.-J. Pireaux, G. Maes, Nanoscaled interdigitated titanium electrodes for impedimetric biosensing, Sensors and Actuators B 68 (2000) 360-370.
[54]C.C. Lin, L.C. Chen, C.H. Huang, S.J. Ding, C.C. Chang, H.C. Chang, Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection, Electroanalytical Chemistry 619-620(2008), 39-45.
[55]Q. Liu, J. Yu, L. Xiao, J.C.O. Tang, Y. Zhang, P. Wang, M. Yang, Impedance studies of bio-behavior and chemosensitivity of cancer cells by Micro-electrode arrays, Biosensors and Bioelectronics 24 (2009) 1305-1310.
[56]Analog Devices Inc., Analog Dialogue 38(2004), 1-5.
[57]Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement, Sensors and Actuators A 136 (2007), 518-526.
[58]T. Kawai, T. Kubota, J. Hiraki, Y. Izumi, Biosynthesis of ε-poly-L-lysine in a cell-free system of Streptomyces albulus, Biochemical and Biophysical Research Communications 311 (2003), 635–640.
[59]吳浩青、李永舫,電化學動力學,科技圖書出版社,2001。