跳到主要內容

簡易檢索 / 詳目顯示

研究生: 薛京
Ching Hsueh
論文名稱: 長DNA的Janus粒子
DNA-Grafted Janus Particles
指導教授: 阮文滔
Wen-tau Juan
林耿慧
Keng-hui Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 英文
論文頁數: 31
中文關鍵詞: 膠體粒子
外文關鍵詞: Janus particles, DNA
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們發展了一種新興的材料—具有”頭”與”尾”的膠體粒子。所謂”頭”,是由一種雙重化學性質的粒子作為基礎—稱作Janus 粒子; 而”尾”則是由lambda-DNA 粘在這種粒子的半面所構成。我們以兩種方法來做Janus 粒子:石臘乳膠固定法及渡金法。另外我們也測試了三種不同的生物化學鍵結將lambda-DNA 長在Janus 粒子上:生物素-卵白素鍵結、胺-乙醛鍵結、以及金-硫醇鍵結。經過結合及比較以上的方法,我們認為要做出這種”頭尾”結合的粒子用結合渡金的Janus 微米粒子與硫醇-DNA 是一個有效的方法。


    We developed novel colloidal particles which are composed of a head and tails. The “head” is based on Janus microspheres, amphiphlic particles with two different chemically modified hemispheres. The “tails”are attached by grafting l-DNA onto one of the hemisphere. Both wax-emulsion and gold-evaporation methods are used to generate Janus microspheres. We also test three different biochemical protocols to graft DNA onto silica surface: streptavidin-biotin binding, amine-aldehyde binding and thiol-gold binding. We compared all the methods and found that combining gold-evaporated Janus microspheres with thiol-DNA is an efficient way to fabricate the new class colloidal particles with head-and-tail structures.

    1. Introduction -----------------------------------------------------------------------------------1 2. Background ------------------------------------------------------------------------------------3 2.1 Colloidal Janus particles ----------------------------------------------------------------3 2.2 DNA linker ---------------------------------------------------------------------------------5 2.3 Silanization ---------------------------------------------------------------------------------7 2.4 Gold-thiol bond ---------------------------------------------------------------------------10 3. Experiment and Results ---------------------------------------------------------------------11 3.1 Synthesize Janus particles --------------------------------------------------------------12 3.1.1 Wax/water emulsion method ----------------------------------------------------12 3.1.2 Gold evaporation method --------------------------------------------------------15 3.2 DNA grafting on silica surface ---------------------------------------------------------16 3.2.1 Biotin-strepavidin binding -------------------------------------------------------17 3.2.2 Aldehyde-amine binding ---------------------------------------------------------20 3.2.3 Thiol-gold binding -----------------------------------------------------------------21 3.3 Comparison of Protocols ----------------------------------------------------------------22 3.4 Challenges ----------------------------------------------------------------------------------24 3.5 Synthesize DNA grafted Janus particles ----------------------------------------------25 3.5.1 Gold Janus Particles with Amine-aldehyde binding -------------------------26 3.5.2 Gold Janus particles with thiol-DNA -------------------------------------------28 4. Conclusion and Outlook ----------------------------------------------------------------------29

    Reference
    [1] A.V. Blaaderen, Science, 301, 470 (2003)
    [2] P.G. de Gennes, Rev. Mod. Phys. 64, 645 (1992)
    [3] O. Cayre, V.N. Paunov, O.D. Velev, J. Material Chemistry. 13, 2445(2003)
    [4] L. Hong, S. Jiang, S. Granick, Langmuir, 22, 9495(2006)
    [5] A. V. Blaaderen, Nature, 439, 545 (2006)
    [6] S.C. Glotzer, M.J. Solomon, Nature, 6, 557(2007)
    [7] S. Jiang, S. Granick, J. Chemical Physics. 127, 161102(2007)
    [8] R.F. shepherd, J.C. Conrad, S.K. Rhodes, D.R. Link, M. Marquez,D. A. Weitz, J.A. Lewis, Langmuir, 22, 8618(2006)
    [9] L. Hong, A. Cacciuto, E. Luijten, S. Granick, nano letter, 6, 2510(2006)
    [10] C. J. Behrend, J. N. Anker, R. Kopelman, Applied Physics letters, 84, 154(2004)
    [11] S. Jiang, S. Granick, J. Chemical physics, 127, 161102(2007)
    [12] Y. Lu, H. Xiong, X. Jiang, Y. Xia, J. Am. Chem. Soc, 125, 12724(2003)
    [13] K. Fujimoto, K. Nakahama, M. Shidara, H. Kawaguchi, Langmuir, 15, 4630(1999)
    [14] A. J. Kim, P. L. Biananiello and J. C. Crocker, Langmuir, 22, 1991(2006)
    [15] T. Schmatko, B. Bozorgui, N. Geerts, D. Frenkel, J.E. Eiser, W.C.K. Poon Softer Mater, 3, 703(2007)
    [16] D. Nykypanchuk, M.M. Maye, D.V.D. Lelie, O. Gang, Nauture, 451, 459(2008)
    [17] J.D. Le, Y. Pinto, N.C. Seeman, K.M. Forsyth, T.A. Taton, R. A. Kiehl, NanoLetters, 4, 2343(2004)
    [18] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev, 105, 1103(2005)
    [19] J. J. Storhoff, R. Elghanian, R.C. Music, C.A. Mirkin, R.L. Letsinger, J. Am. Chem, 120, 1959(1998)
    [20] M. Grandbois, M. Beyer, M. Rief, H.C. Schaumann, H.E. Gaub, Science, 283, 1727(2008)
    [21] G. Zhang, D. Wang, H. Mohwald, Chem. Mater, 18, 3985
    [22] R.G. Nuzzo, D.L. Allara, J. American Chemistry Society, 105, 4481(1983)
    [23] E.C. Nelson, P.V. Braun, Science, 318, 924(2007)

    QR CODE
    :::