跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉家凱
Jia-Kai Liu
論文名稱: 利用支持向量機降低HEVC畫面間預測運算複雜度之研究
Reduction of Computational Complexity for HEVC Inter Prediction with Support Vector Machine
指導教授: 林銀議
Yin-yi Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: HEVC支持向量機畫面間預測移動向量RDO
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著技術進步以及人類需求,高解析度的影像產品也越來越多,而為了能夠有效壓縮伴隨著高解析度而來的龐大資料量,HEVC使用許多的方法來有效的降低位元率。因此本論文提出應用SVM於編碼單元深度的分類以及預測單元模式的分類。編碼單元以畫面間預測的移動向量值的資訊、合併模式的CBF、鄰近區塊深度資訊做為特徵(Feature)將一個CTU分類成只做深度0、深度0~1、深度0~2、深度0~3四種類別,以此略過特定深度的運算。預測單元以畫面間預測的移動向量值的資訊、Skip flag、鄰近區塊RDO資訊做為特徵(Feature),判斷預測單元做完Inter2N×2N後是否需要提前中止,進而節省掉後續預測模式所需花費的運算時間。最後結合兩種演算法與HEVC進行比較,平均BDBR上升不到0.1%的情況下,能減少30%的編碼時間。


    With the advancement of technology and high requirement, multimedia devices that have high resolution started to rapidly increase in numbers. In order to compress the significant increasing of data storage effectively, HEVC utilize multiple techniques to efficiently decrease bitrate。Hence, in this thesis, we proposed SVM-based fast inter CU depth decision algorithm and SVM-based fast inter PU mode decision algorithm to reduce the computational complexity. In SVM-based fast inter CU depth decision algorithm, we can skip certain depth by using SVM with features, including motion vector variance, CBF of merge mode, neighboring CU depth to classify a CTU into depth 0, depth 0~1, depth 0~2 and depth 0~3. In SVM-based fast inter PU mode decision algorithm, we use SVM with features, including motion vector variance, skip flag, the information of neighboring RDO to classify whether do early termination at 2N×2N. At last, we combine two algorithm to compare with HEVC, the average BDBR rises by less than 0.1% and 30% encoding time saving.

    第一章 緒論 1 1.1高效率視訊編碼(HEVC)標準介紹 1 1.2高效率視訊編碼架構介紹 2 1.2.1編碼單元(Coding Unit) 3 1.2.2預測單元(Prediction Unit) 4 1.2.4碼率失真代價函數(RD cost) 6 1.2.5HEVC架構(Configuration) 8 1.3研究動機及目的 10 1.4論文架構 10 第二章 畫面間預測模式及支持向量機介紹 11 2.1 畫面間預測介紹(Inter Prediction) 11 2.1.1合併模式決策介紹(Merge Mode Decision) 11 2.1.2畫面間模式決策介紹(Inter Mode Decision) 14 2.2支持向量機(Support Vector Machine) 18 第三章 支持向量機應用於HEVC編碼單元快速決策演算法 23 3.1 支持向量機編碼單元特徵選取介紹 25 3.1.1 移動向量變異數(Motion Vector Variance) 25 3.1.2 Coded Block Flag (CBF) 32 3.1.3 鄰近編碼單元深度資訊 (Neighboring CU) 35 3.2 應用SVM的畫面間深度快速決策演算法 39 3.2.1 量化參數(QP) 39 3.2.2 訓練樣本(Training) 45 3.2.2 效能分析及討論 47 第四章 支持向量機應用於HEVC預測單元快速決策演算法 58 4.1 支持向量機預測單元特徵選取介紹 60 4.1.1 移動向量變異數 60 4.1.2 Skip Flag 65 4.1.3鄰近區塊RDO資訊 66 4.2 應用SVM的畫面間預測模式快速決策演算法 68 4.2.1訓練樣本(Training) 68 4.2.2效能分析及討論 70 4.3 合併畫面間預測編碼單元快速決策與幾種預測模式快速決策之比較 73 4.3.1合併應用SVM於編碼單元深度及預測單元模式之演算法 73 4.3.2合併應用SVM編碼單元演算法於數種預測模式演算法之效能探討 80 第五章 結論 82 參考文獻 83

    [1] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen, U.K.: John Wiley & Sons, 2003.
    [2] “Generic coding of moving pictures and associated audio information,” ISO/IEC 13818-2: Video (MPEG-2), May 1996.
    [3] “Coding of audio-visual objects - Part 2: Visual,” in ISO/IEC 14496-2 (MPEG-4 Visual Version 1), Apr. 1999.
    [4] “Video coding for low bit rate communication, version 1,” ITU-T recommendation H.263, 1995.
    [5] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 15(HM15) Encoder Description,” JCTVC-Q1002, JCT-VC Meeting, Valencia, ES, Apr. 2014.
    [6] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han and Thomas Wiegand,” Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. CSVT, vol. 22, no. 12, Dec. 2012.
    [7] P. Helle, S. Oudin, B. Bross, D. Marpe, M. O. Bici, K. Ugur, J. Jung, G. Clare, and T. Wiegand,” Block Merging for Quadtree-Based Partitioning in HEVC,” IEEE Tran.CSVT, vol.22, no. 12, Dec. 2012
    [8] L. Zhao, X. Guo, S. Lei, S. Ma and D. Zhao, “Simplified AMVP for High Efficiency Video Coding,” in Proc. IEEE ICIP, Nov. 2012, pp. 1-4.
    [9] J. L. Lin, Y. W. Chen, Y. W. Huang, and S. M. Lei, “Motion Vector Coding in the HEVC Standard,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, Dec. 2013, pp. 957-968.
    [10] Y. Ismail and S. El-etriby, “Fast Diamond Search Algorithm for Real Time video Coding”, in Proc. IEEE ICNC, Feb. 2012, pp. 729-733.
    [11] LIBSVM—A Library for Support Vector, Machineshttp://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
    [12] S.J Cai,” Reduction of Computation Complexity for HEVC Intra Prediction with Support Vector Machine” Master Thesis, National Central University, Jun 2017
    [13] X.N Lee,“Reducing Computational Complexity of Decoding-assisted HEVC Inter Prediction ” Master Thesis, National Central University, Jun 2018
    [14] Y.T Tsai,”Computation Reduction For HEVC Inter Prediction” Master Thesis, National Central University, Jan 2019
    [15] Li Lin, “Reduction of Computational Complexity for an Advanced HEVC Inter Prediction ” Master Thesis, National Central University, Jun 2017
    [16] J. Kim and E. Izquierdo, “An effect strategy for early skip mode decision in HEVC,” in Proc. ICIP, Sept . 2018, pp.3603-3607

    QR CODE
    :::