跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳泓成
Hong-Cheng Chen
論文名稱: 利用SPRi和FET探討中性DNA與一般DNA探針於生物晶片應用上之價值
The Value of Using Neutral DNA Probes on Biosensor Comparing with Regular DNA Probes Depicted by SPRi & FET
指導教授: 陳文逸
Wen-Yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 表面電漿共振影像儀場效電晶體生物感測器基因晶片不帶電DNA探針
外文關鍵詞: field effect transistor sensors, Neutral DNA probe, Gene chip, surface plasmon resonance imaging
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因晶片是應用於基因功能研究中非常有用的工具,但對使用者以及研發者而言,傳統的DNA晶片仍然有能被改善的空間。近年來,有需多研究團隊致力於改善基因晶片的性質,如檢測靈敏度、序列辨識能力、檢測速度以及操作範圍...等等。大量的研究利用檢測技術、晶片表面製備或探針固定方法來改良基因晶片,而在這當中,感測探針的性質是關鍵因素之一。
    中性DNA是一種藉由修飾後,使骨架不帶電的DNA類似物,它在與互補股雜交時因為不會有靜電排斥,所以相較於一般DNA,中性DNA和其互補股會有較強的雜交能力,且也由於不會產生靜電排斥,所以中性DNA可以在低鹽或是無鹽的條件下進行雜交。此外,也有文獻指出以中性DNA做為表面探針時,其辨識單一不互補鹼基對之能力是較強的,因此使用中性DNA做為感測器之表面探針相當具有發展潛力。
    在本研究中,我們將會利用表面電漿共振影像儀(SPRi)以及場效電晶體生物感測器(FET)驗證中性DNA表面探針之應用價值。我們藉由比較兩種不同探針的生物晶片表面和互補股之吸附的行為去比較兩種不同表面探針在應用上檢測的靈敏度,以及去了解表面探針和互補股之交互作用行為,並進一步去探討當中影響互補股吸附量的原因。
    本研究藉由表面電漿共振影像儀以及場效電晶體生物感測器觀測表面探針和互補股間之交互作用行為,成功驗證了以中性DNA作為表面探針之應用價值。並且進一步去證明了使中性DNA探針提供較佳敏感度之原因是因中性DNA的雜交效率較好以及中性DNA探針的固定量較多所造成。


    DNA biosensors based on sequence-specific DNA hybridization have been widely used in clinical diagnostics, forensic sciences and biomedical research. In recent years intensive efforts have been focused on the development of ultrasensitive DNA biosensors capable of quantitative gene expression analysis. A large number of detection techniques and sensor surface preparation or probe immobilization methods have been developed in order to maximize the sensitivity and specificity. Nature of the sensing probe is one of the key elements generally dictating the performance of the sensor.
    Neutral DNA is an uncharged DNA analogue. It’s electrically neutral is due to the backbone modification. No electrostatic repulsive during the hybridization between neutral DNA probe and regular DNA from sample which makes the hybridization efficiency of the neutral DNA better than regular one. Here in the study, we adopted SPR and FET biosensor systems for validating the value of the neutral DNA on non-labeling gene chip applications.

    中文摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 2 2.1 生物晶片 2 2.1.1 基因晶片 2 2.1.1.1 基因檢測技術 3 2.2 去氧核醣核酸 4 2.2.1 去氧核醣核酸結構 4 2.2.2 核酸類似物 8 2.3 生物感測器 11 2.3.1 表面電漿共振儀 12 2.3.1.1 表面電漿現象原理 14 2.3.1.2 表面電漿共振儀分類 19 2.3.1.3 表面電漿共振影像儀 23 2.3.2 奈米線場效電晶體生物感測器 27 2.3.2.1 奈米線場效電晶體生物感測器檢測原理 28 2.3.2.2 鹽離子濃度對檢測之影響 33 2.3.2.3 表面配體電性對檢測之影響 36 2.4 晶片改質 40 2.4.1 表面分子之固定化 42 2.4.1.1 共價鍵結 43 2.4.1.2 生物親和性 45 第三章 實驗儀器、方法與材料 47 3.1 實驗藥品 47 3.2 儀器設備 50 3.3 實驗方法 53 3.3.1 緩衝溶液配製 53 3.3.2 CD實驗 53 3.3.3 ESCA實驗 54 3.3.4 FET實驗 54 3.3.4.1 FET晶片改質 54 3.3.4.2 FET流體檢測 55 3.3.5 SPRi實驗 56 3.3.5.1 SPRi生物晶片製備 56 3.3.5.2 SPRi晶片改質 56 3.3.5.3 SPR流體檢測 56 3.3.6 高通量SPRi實驗 57 3.3.6.1 DNA 探針之固定化 57 3.3.6.2 DNA雜交實驗 58 第四章 結果與討論 59 4.1核酸序列二級結構模擬之結果 59 4.2 不帶電DNA專一性雜交之鑑定 63 4.3 表面探針固定化之鑑定 67 4.4 中性DNA探針應用於FET上優勢之探討 71 4.5 利用SPRi探討中性DNA探針提供較佳檢測靈敏度原因 79 4.6 中性DNA探針應用於高通量SPRi實驗上優勢之探討 84 4.6.1 不同甘油含量對探針和互補股DNA雜交影響之探討 85 4.6.2 不同濃度互補股DNA下之表面吸附情況探討 89 第五章 結論 92 第六章 參考文獻 94

    1. Rodriguez-Mozaz, S., et al., Biosensors for environmental applications: Future development trends. Pure and Applied Chemistry, 2004. 76(4): p. 723-752.
    2. Hu, W.P., et al., Optimization of DNA-directed immobilization on mixed oligo(ethylene glycol) monolayers for immunodetection. Analytical Biochemistry, 2012. 423(1): p. 26-35.
    3. Oh, S.J., et al., Surface modification for DNA and protein microarrays. Omics-a Journal of Integrative Biology, 2006. 10(3): p. 327-343.
    4. Samoc, M., A. Samoc, and J.G. Grote, Complex nonlinear refractive index of DNA. Chemical Physics Letters, 2006. 431(1-3): p. 132-134.
    5. Niu, S., G. Singh, and R.F. Saraf, Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array. Biosens Bioelectron, 2007. 23(5): p. 714-720.
    6. Nabok, A., et al., The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosens Bioelectron, 2007. 23(3): p. 377-383.
    7. Demirel, G., et al., A novel DNA biosensor based on ellipsometry. Surface Science, 2008. 602(4): p. 952-959.
    8. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15.
    9. Mavri, J., P. Raspor, and M. Franko, Application of chromogenic reagents in surface plasmon resonance (SPR). Biosens Bioelectron, 2007. 22(6): p. 1163-1167.
    10. Feltis, B.N., et al., A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron, 2008. 23(7): p. 1131-1136.
    11. Campbell, C.T. and G. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 2007. 28(15): p. 2380-2392.
    12. 劉仁材,"自組裝單層膜技術於光學式及電梳式生物感測器之應用研究研究",博士論文,國立中央大學化學與材料工程研究所,2010
    13. Watson, J.D. and F.H.C. Crick, Molecular-Structure of Nucleic-Acids - a Structure for Deoxyribose Nucleic-Acid. Jama-Journal of the American Medical Association, 1993. 269(15): p. 1966-1967.
    14. Kurreck, J., Antisense technologies - Improvement through novel chemical modifications. European Journal of Biochemistry, 2003. 270(8): p. 1628-1644.
    15. Egholm, M., et al., Pna Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules. Nature, 1993. 365(6446): p. 566-568.
    16. Tomac, S., et al., Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
    17. Nielsen, P.E., et al., Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. Science, 1991. 254(5037): p. 1497-1500.
    18. Ananthanawat, C., et al., Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique. Biosens Bioelectron, 2010. 25(5): p. 1064-1069.
    19. Rogers, K.R., Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta, 2006. 568(1-2): p. 222-231.
    20. Huang, S.H., et al., Detection of serum uric acid using the optical polymeric enzyme biochip system. Biosens Bioelectron, 2004. 19(12): p. 1627-1633.
    21. Poetz, O., et al., Protein microarrays: catching the proteome. Mechanisms of Ageing and Development, 2005. 126(1): p. 161-170.
    22. Lee, J.O., et al., Aptamers as molecular recognition elements for electrical nanobiosensors. Analytical and Bioanalytical Chemistry, 2008. 390(4): p. 1023-1032.
    23. Ozaki, H., et al., Biomolecular sensor based on fluorescence-labeled aptamer. Bioorganic & Medicinal Chemistry Letters, 2006. 16(16): p. 4381-4384.
    24. McCauley, T.G., N. Hamaguchi, and M. Stanton, Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Analytical Biochemistry, 2003. 319(2): p. 244-250.
    25. Bayrak, Y., Application of Langmuir isotherm to saturated fatty acid adsorption. Microporous and Mesoporous Materials, 2006. 87(3): p. 203-206.
    26. Morgan, H. and D.M. Taylor, A Surface-Plasmon Resonance Immunosensor Based on the Streptavidin Biotin Complex. Biosens Bioelectron, 1992. 7(6): p. 405-410.
    27. Boozer, C., et al., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal Chem, 2006. 78(5): p. 1515-1519.
    28. Peterson, A.W., L.K. Wolf, and R.M. Georgiadis, Hybridization of mismatched or partially matched DNA at surfaces. Journal of the American Chemical Society, 2002. 124(49): p. 14601-14607.
    29. Ladd, J., et al., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004. 20(19): p. 8090-8095.
    30. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films., Physical Review, 106, 874 (1957).
    31. Powell, C. J., Swan, J. B., Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium., Physical Review, 118, 640 (1960).
    32. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection., Zeitschrift fur Physik A Hadrons and Nuclei, 216, 398 (1968).
    33. Kretschmann, E., Raether, H., Radiative decay of non radiative surface plasmons excited by light., Zeitschrift Fur Naturforschung, 23A, 2135 (1968).
    34. Liedberg, B., Nylander, C., Lunstrom, I., Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 4, 299 (1983).
    35. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I., et al., Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology., Biotechniques, 11, 620 (1991).
    36. 胡文品,表面電漿共振生物感測器簡介與應用,生物感測技術專刊,3-17.
    37. 謝振傑,光纖生物感測器,物理雙月刊(廿八卷四期),2006 年8 月.
    38. www.ntist.edu.tw/sensor/第五場主題演講.pdf.
    39. 劉盈村,“光纖式表面電漿子共振生醫微感測器”,碩士論文,國立台灣大學醫學工程研究所,2001。
    40. Piliarik, M., Homola, J., Surfae plasmon resonance biosensors for multianalyte detection.
    41. Lott, G.A., et al., Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(40): p. 16521-16526.
    42. Su, Y.D., S.J. Chen, and T.L. Yeh, Common-path phase-shift interferometry surface plasmon resonance imaging system. Optics Letters, 2005. 30(12): p. 1488-1490.
    43. Chen, W.Y., et al., A multispot DNA chip fabricated with mixed ssDNA/oligo (ethylene glycol) self-assembled monolayers for detecting the effect of secondary structures on hybridization by SPR imaging. Sensors and Actuators B-Chemical, 2007. 125(2): p. 607-614.
    44. Piliarik, M., H. Vaisocherova, and J. Homola, Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B-Chemical, 2007. 121(1): p. 187-193.
    45. Piliarik, M. and J. Homola, Self-referencing SPR imaging for most demanding high-throughput screening applications. Sensors and Actuators B-Chemical, 2008. 134(2): p. 353-355.
    46. Beusink, J.B., et al., Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron, 2008. 23(6): p. 839-844.
    47. Berger, C.E.H., et al., Surface plasmon resonance multisensing. Anal Chem, 1998. 70(4): p. 703-706.
    48. Hide, M., et al., Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Analytical Biochemistry, 2002. 302(1): p. 28-37.
    49. Yanase, Y., et al., The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens Bioelectron, 2007. 22(6): p. 1081-1086.
    50. Yanase, Y., et al., Living cell positioning on the surface of gold film for SPR analysis. Biosens Bioelectron, 2007. 23(4): p. 562-567.
    51. Fang, Y., et al., Resonant waveguide grating biosensor for living cell sensing. Biophysical Journal, 2006. 91(5): p. 1925-1940.
    52. Rich, R.L. and D.G. Myszka, Advances in surface plasmon resonance biosensor analysis. Current Opinion in Biotechnology, 2000. 11(1): p. 54-61.
    53. Cooper, M.A., Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry, 2003. 377(5): p. 834-842.
    54. Yanase, Y., et al., Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens Bioelectron, 2010. 26(2): p. 674-681.
    55. 黃莉雅,"利用表面電漿共振影像儀探討核酸共軛之蛋白質晶片最佳化研究",碩士論文,國立中央大學化學與材料工程研究所,2011
    56. Curreli, M., et al., Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. Ieee Transactions on Nanotechnology, 2008. 7(6): p. 651-667.
    57. Li, Z., et al., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters, 2004. 4(2): p. 245-247.
    58. Stern, E., et al., Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
    59. Gao, Z.Q., et al., Silicon nanowire arrays for label-free detection of DNA. Anal Chem, 2007. 79(9): p. 3291-3297.
    60. Kind, M. and C. Woll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
    61. Foster, A.S. and R.M. Nieminen, Adsorption of acetic and trifluoroacetic acid on the TiO2(110) surface. Journal of Chemical Physics, 2004. 121(18): p. 9039-9042.
    62. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980, 102, 92-98.
    63. Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
    64. Rusmini, F., Z.Y. Zhong, and J. Feijen, Protein immobilization strategies for protein biochips. Biomacromolecules, 2007. 8(6): p. 1775-1789.
    65. Niemeyer, C.M., Semisynthetic DNA-Protein Conjugates for Biosensing and Nanofabrication. Angewandte Chemie-International Edition, 2010. 49(7): p. 1200-1216.
    66. Chien, F.C., et al., An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing. Chemical Physics Letters, 2004. 397(4-6): p. 429-434.
    67. Steel, A.B., et al., Immobilization of nucleic acids at solid surfaces: Effect of oligonucleotide length on layer assembly. Biophysical Journal, 2000. 79(2): p. 975-981.
    68. Qiang, F., et al., Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. International Journal of Pharmaceutics, 2012. 430(1-2): p. 161-166.
    69. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1751(2): p. 119-139.
    70. Gray, D.M., R.L. Ratliff, and M.R. Vaughan, Circular-Dichroism Spectroscopy of DNA. Methods in Enzymology, 1992. 211: p. 389-406.
    71. Lin, K.C., et al., Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Applied Biochemistry and Biotechnology, 2009. 158(3): p. 631-641.
    72. Lin, P.H., et al., Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry. Colloids and Surfaces B-Biointerfaces, 2011. 88(2): p. 552-558.
    73. Nelson, K.E., et al., Surface characterization of mixed self-assembled monolayers designed for streptavidin immobilization. Langmuir, 2001. 17(9): p. 2807-2816.
    74. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5-8): p. 151-256.
    75. Bunimovich, Y.L., et al., Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. Journal of the American Chemical Society, 2006. 128(50): p. 16323-16331.
    76. Ananthanawat, C., et al., Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens Bioelectron, 2009. 24(12): p. 3544-9.
    77. Degefa, T.H. and J. Kwak, Electrochemical impedance sensing of DNA at PNA self assembled monolayer. Journal of Electroanalytical Chemistry, 2008. 612(1): p. 37-41.
    78. Gong, P., et al., Molecular Mechanisms in Morpholino-DNA Surface Hybridization. Journal of the American Chemical Society, 2010. 132(28): p. 9663-9671.
    79. Liu, Y., et al., Kinetic mechanisms in morpholino-DNA surface hybridization. Journal of the American Chemical Society, 2011. 133(30): p. 11588-96.
    80. Piliarik, M., M. Bockova, and J. Homola, Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectron, 2010. 26(4): p. 1656-1661.
    81. Fernandez, F., et al., A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron, 2010. 26(4): p. 1231-1238.
    82. Ladd, J., et al., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry, 2009. 393(4): p. 1157-1163.
    83. Peterson, A.W., R.J. Heaton, and R.M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 2001. 29(24): p. 5163-5168.

    QR CODE
    :::