跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳晏閣
Yen-Ko Chen
論文名稱: F.E.Udwadia系統識別公式之探討
Investigate the identification formulae which are proposed by F.E.Udwadia.
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 118
中文關鍵詞: 傅立葉SINE級數拉普拉斯轉換系統識別
外文關鍵詞: system identification, Laplace transformation, Fourier sine series
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系統識別在近年來愈來愈受到重視,有許多的專家學者提出各種不同的識別公式,本文即是針對F.E.Udwadia於1978年提出的識別公式加以探討。在本文中有探討拉普拉斯轉換在數值計算上解析解與數值解之間的誤差,並運用傅立葉SINE級數解決拉普拉斯轉換在参數趨近無窮大的數值計算問題,最後在本文中提出了一個新的識別公式。


    In recent years, system identification has been attracted more and more attention. Scholars proposed many kinds of identification formulae. The goal of this study is to investigate the formulae which are proposed by F.E.Udwadia in 1978. In this study confer the errors between exact solution and numerical solution in numerical computation of Laplace transformation and by use of Fourier sine series to solve the numerical problems while parameter of Laplace transformation approach infinity. Finally, in this paper, it is proposed a new identification formula.

    目錄 _________________________________________________________________ 頁次 第一章 概論 1 1-1研究之動機與目的 1 1-2文獻回顧 1 1-3論文內容 2 第二章 F.E.Udwadia之系統識別公式介紹 3 2-1系統模型之介紹 3 2-2識別方法一 4 2-3識別方法二 5 第三章 拉普拉斯轉換之探討 8 3-1拉普拉斯轉換之公式 8 3-2拉普拉斯轉換於數值計算時之誤差 8 3-3數值計算於拉普拉斯轉換結論 18 第四章 傅立葉SINE級數 19 4-1傅立葉SINE級數之觀念 19 4-2利用傅立葉SINE級數來計算拉普拉斯轉換 20 4-3利用傅立葉SINE級數來計算拉普拉斯轉換結論 23 第五章 公式修正 24 5-1修正方法一 24 5-2修正方法二 26 第六章 數值驗證 29 6-1所使用的地震資料及樓房資料 29 6-2使用Udwadia之公式識別阻尼與勁度 33 6-3使用修正後的公式識別阻尼與勁度 58 6-4探討時間間距對識別阻尼之影響 75 6-5探討時間間距對識別勁度之影響 87 6-6探討時間間距對新推導出的迭代公式之影響 99 第七章 結論與建議 101 7-1結論 101 7-2建議 102 參考文獻 103 附錄 106

    參考文獻
    1.Yao JTP, Natke HG. Damage detection and reliability evaluation of existing
    structures. Structural Safety 1994; 15:3-16.
    2.Agbabian MS. Masri SF, Miller RK, Caughey TK. System identification approach
    to detection of structural changes. Journal of Engineering Mechanics ASCE
    1991; 117(2): 370-390.
    3.Masri SF, Nakamura M, Chassiakos AG, Caughey TK. A neural network approach
    to the detection of changes in structural parameters. Journal of Engineering
    Mechanics ASCE 1996; 122(4): 350-360.
    4.Hart GC, Yao JTP. System identification in structural dynamics. Journal of
    Engineering Mechanics Division ASCE1977; 103(EM6): 1089-1104.
    5.Beck JL, Jennings PC. Structural identification using linear models and
    earthquake records. Earthquake Engineering and Structural Dynamics 1980; 8:
    145-160.
    6.Hoshiya M, Saito E. Structural identification by extended Kalman filter.
    Journal of Engineering Mechanics ASCE 1984; 110(12): 1757-1770.
    7.Koh CG, See LM, Balendra T. Estimation of structural parameters in time
    domain: a substructure approach. Earthquake Engineering and Structural
    Dynamics 1991; 20: 787-801.
    8.Hjelmstad KD, Banan MoR, Banan MaR. On building finite element models of
    structures from modal response. Earthquake Engineering and Structural
    Dynamics 1995; 24: 53-67.
    9.Hjelmstad KO. On the uniqueness of modal parameter estimation. Journal of
    Sound and Vibration 1996; 192(2):581-598.
    10.Ghanem R, Shinozuka M. Structural-system identification 1: theory.
    Journal of Engineering Mechanics ASCE 1995;121(2): 255-264.
    11.Shinozuka M, Ghanem R. Structural-system identification II: experimental
    verification. Journal of Engineering Mechanics ASCE 1995; 121(2): 265-273.
    12.Kitada Y. Identification of nonlinear structural dynamic systems using
    wavelets. Journal of Engineering Mechanics ASCE 1998; 124(10): 1059-1066.
    13.Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage
    identification and health monitoring of structural and mechanical
    systems from changes in their vibration characteristics: a literature
    review.ReportLA-13070-MS,Los Alamos National Laboratory,1996.
    14.Housner G et al. Special issue, Structural control: past, present, and
    future. Journal of Engineering Mechanics ASCE 1997; 123(9): 897-971.
    15.Takewaki, 1., and Nakamura, M., “Stiffliess-damping simultaneous
    identification using limited earthquake records”, Earthqu. Eng. Struct.
    Dyn., 29, 2000, pp.1219-1238.
    16.Safak, E., “Analysis of earthquake records from structures: an overview”,
    Strong motion Instrumentation for Civil Engineering Structures, M. Erdik et
    al., eds., Kiuwer Academic Publishers, The Netherlands, 2001, pp. 91-107.
    17.Udwadia FE, Sharma DK, Shah PC. Uniqueness of damping and stiffness
    distributions in the identification of soil and structural systems. Journal
    of Applied Mechanics, ASME 1978; 45: 181-187.
    18.Chopra, A. K., “Dynamics of Structures: Theory and Applications to
    Earthquake Engineering (2~u~ edn)”, Prentice-Hall, Inc., Upper Sadd River,
    NJ, 2001.
    19.Research notes written by Hin-Chi Lei, 2004. (to be publish)
    20.Mahendra P. Singh , Luis E . Suarez and Rildova ,“Seismic response of
    rail-counterweight system in elevators”, Earthqu. Eng. Struct. Dyn., 33,
    2002, pp.281-303.

    QR CODE
    :::