| 研究生: |
洪煜柔 Yu-Jou Hung |
|---|---|
| 論文名稱: |
錫摻雜之高錳矽化物之製備與熱電性質分析 Preparation and Analysis of Thermoelectric Properties of Sn-Doped High Manganese Silicide |
| 指導教授: |
李勝偉
洪健龍 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 高錳矽化物 、熱電性質 、錫 、不匹配相 |
| 外文關鍵詞: | Higher manganese silicide, Thermoelectric properties, Tin, Incommensurate phase |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高錳矽化物(HMS)是極具潛力發展為中溫型發電之P型熱電材料。高錳矽化物為一種不匹配相(Incommensurate phase),目前發現的有四種高錳矽化物之相,分別為Mn4Si7、Mn11Si19、Mn15Si26與Mn27Si47,這四種相皆為螺旋階梯狀排列的晶體結構。
高錳矽化物之熱電性質通常會藉由摻雜或固溶其他元素改善。本研究採用錫摻雜至高錳矽化物中,使用電弧熔煉與火花電漿燒結的方式,製備多晶摻雜錫之高錳矽化物塊材,並且研究其相組成與微結構。我們選用的錫摻雜比例為0.1at%、0.5at%、1at%和1.5at%。之後對經火花電漿燒結的高錳矽化物塊材進行熱電性質量測,量測的溫度範圍介於323K~773K之間;發現在摻雜量為0.1at%的時候,會有最低的晶格導熱率,並且有最高的ZT值。
Higher manganese silicide (HMS) is considered to be a promising p-type thermoelectric material for use in intermediate-temperature power generation. It is well known that HMS exist as several incommensurable phases such as Mn4Si7, Mn11Si19, Mn15Si26, Mn27Si47, and all of these compounds are Nowotny chimney phases exhibiting tetragonal crystal structure.
Thermoelectric performance is improved through compositional optimization by doping or substitution. In this work, we prepared polycrytstalline HMS with Sn additions by arc melting and subsequent spark plasma sintering (SPS). The phases, composition, and microstructures of the Sn-doped polycrystalline HMS bulk were investigated. In this study, we select doped-Sn ratio of 0.1at%, 0.5 at%, 1 at%, and 1.5at%. After SPS, we measured the thermoelectric properties of sintered bulk sample from 323K to 773K. We found that the thermal conductivity was significantly improved when the Sn was 0.1at%. The HMS with Sn has the best the ZT is 0.1at%.
[1] Ssennoga Twaha, Jie Zhu, Yuying Yan, and Bo Li., “A comprehensive review of thermoelectric technology : materials, applications, modelling and performance improvement”, Renewable and sustainable energy reviews, 65, pp.698-726, 2016.
[2] Fitriani, R. Ovik, B.D. Long, M.C. Barma, M. Riaz, M.F.M. Sabri, S.M. Said, and R. Saidur, “A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery”, Renewable and sustainable energy reviews, 64, pp.635-659, 2016.
[3] Yim WM, and Rosi FD, “Compound tellurides and their alloys for Peltier cooling-a review”, Solid State Electron, 15, pp.1121-1140, 1972.
[4] Noda Y, Orihashi M, and Nishida IA, “Preparation and thermoelectric properties of Ag or K doped PbTe”, Mater Trans JIM , 39, pp.602-605, 1998.
[5] Harringa JL, and Cook BA. “Application of hot isostatic pressing for consolidation of n-type silicon-germanium alloys prepared by mechanical alloying”, Mater Sci Eng B, 60, pp. 137–142, 1999.
[6] I. Kawasumi, M. Sakata, I. Nishida, and K. Matsumoto, “Crystal growth of manganese silicide, MnSi1.73 and semiconducting properties of Mn15Si26”, Journal of materials science, 16, pp.355-366.1981.
[7] X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, “A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications”, Renewable and sustainable energy reviews, 32, pp.486-503, 2014.
[8] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect”, Nature, 455, pp.778-781, 2008.
[9] Terry M. Tritt, “Thermoelectric phenomena materials, and applications”, Annu. Rev. Mater. Res., 41, pp.433-448, 2011.
[10] 朱旭山,「熱電材料與元件之原理及應用」,電子與材料雜誌,第22期,pp.78-89, 2004。
[11] Rowe, David Michael, ed. Thermoelectrics handbook : macro to nano, CRC press, 2005.
[12] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced materials, 19, pp.1043-1053, 2007.
[13] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano Letters, Vol. 9, No. 2, pp.711-715, 2009.
[14] Ali Shakouri, “Recent developments in semiconductor thermoelectric physics and materials”, Annu. Rev. Mater. Res., 41, pp.399-431, 2011.
[15] Rowe DM, ed., Handbook of thermoelectrics, Boca Raton: CRC, 1995.
[16] Yuzuru Miyazaki, Dai Igarashi, Kei Hayashi, and Tsuyoshi Kajitani, “Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ(γ~1.74)”, Physical Review, B, 78, 214104, 2008.
[17] J. Higgins, A. Schmitt, Llia. A. Guzei, and Song Jin, “Higher manganese silicide nanowires of Nowotny chimney ladder phase”, J. Am. Chem. Soc., 130, pp.16086-16094, 2008.
[18] Massalski, T. B., Okamoto, H., Subramanian, P. R., Kacprzak, L., and Scott, W. W., Binary alloy phase diagrams, American Society for Metals Metals Park, OH, 1986.
[19] R. De Ridder, G. Van Tendeloo, and S. Amelinckx, “Electron microscopic study of the chimney ladder structures MnSi2-x and MoGe2-x”, phys. stat. sol., 88, pp.383-393, 1976.
[20] U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, “Magnetic properties of single crystalline Mn4Si7”, J. Alloys Compd., 361, pp.13-18, 2003.
[21] O. Schwomma, H. Nowotny, and A. Wittman, Monatsch. Chem., 94, pp.681, 1963.
[22] H. W. Knott, M. H. Mueller, and L. Heaton, “The crystal structure of Mn15Si26”, Acta Crystallogr, 23, pp.549, 1967.
[23] G. Zwilling, and H. Nowotny, Monatsch. Chem., 104, pp.668-675, 1973.
[24] D. B. Migas, V. L. Shaposhnikov, A. B. Filonov, and V. E. Borisenko, “Ab initio study of the band structures of different phases of higher manganese silicides”, PHYSICAL REVIEW B, 77, 075205, 2008.
[25] Ikuto Aoyama, Mikhail I. Fedorov, Vladimir K. Zaitsev, Fedor Yu. Solomkin, Ivan S. Eremin, Aleksandr Yu. Samunin, Mika Mukoujima, Seijiro Sano, and Toshihide Tsuji, “Effects of Ge Doping on Micromorphology of MnSi in MnSi∼1.7 and on Their Thermoelectric Transport Properties”, Japanese journal of applied physics, vol. 44, No. 12, pp.8562-8570, 2005.
[26] Kawasumi I, Sakata M, Nishida I, and Masumoto K., “Crystal growth of manganese silicide, MnSi~1.73 and semiconducting properties of Mn15Si26”, Journal of materials science, pp.355-366, 1980.
[27] Nishida I, Masumoto K, Kawasumi I, and Sakata M., “Striations and crystal structures of the matrix in the MnSi-Si alloy system”, Journal of the less–common metals, 71, pp.293-301, 1980.
[28] A. Neubauer, C. Pfleiderer, R. Ritz, P.G. Niklowitz, and P. Böni, “Hall effect and magnetoresistance in MnSi”, Physica B, 404, pp.3163-3166, 2009.
[29] A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T.Dasgupta, C. stiewe, R. hassdorf, and E. Mueller, “Improved thermoelectric performance of higher manganese silicides with Ge additions”, Journal of electronic materials, Vol. 39, No. 9, pp.2002-2007, 2010.
[30] Wenhui Luo, Han Li, Fan Fu, Wen Hao, and Xinfeng Tang, “Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method”, Journal of electronic materials, Vol. 40, No. 5, pp.1233-1236, 2011.
[31] V. Ponnambalam, Donald T. Morelli, S. Bhattacharya, and Terry M. Tritt, “The role of simultaneous substitution of Cr and Ru on the thermoelectric properties of defect manganese silicides MnSiδ (1.73 < δ < 1.75)”, Journal of Alloys and Compounds, 580, pp. 598-603, 2013.
[32] V. Ponnambalam, and Donald T. Morelli, “Effect of Cr and Fe substitution on the transport properties of the Nowotny Chimney–Ladder MnSiδ (1.73< δ< 1.75) compounds”, Journal of electronic materials, Vol. 41, No. 6, pp.1389-1394, 2012.
[33] M. Saleemi, A. Famengo, S. Fiamen, S. Boldrini, S. Battiston, M. Johnsson, M.Muhammed, and M.S. Toprak, “Thermoelectric performance of higher manganese silicide nanocomposites”, Journal of Alloys and Compounds, 619, pp.31-37, 2015.
[34] Akio Yamamoto, Swapnil Ghodke, Hidetoshi Miyazaki, Manabu Inukai, Yoichi Nishino, Masaharu Matsunami, and Tsunehiro Takeuchi, “Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides”, Japanese Journal of Applied Physics, 55, 020301, 2016.
[35] Xi Chen, Jianshi Zhou, John B. Goodenough, and Li Shi, “Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase”, J. Mater. Chem. C, 3, pp.10500-10508, 2015.
[36] A.J. Zhou, X.B. Zhao, T.J. Zhu, S.H. Yang, T. Dasgupta, C.Stiewe, R. Hassdorf, and E. Mueller, “Microstructure and thermoelectric properties of SiGe-added higher manganese silicides”, Materials Chemistry and Physics, 124, pp.1001-1005, 2010.
[37] A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, “Composites of Higher Manganese Silicides and Nanostructured Secondary Phases and Their Thermoelectric Properties”, Journal of electronic materials, Vol. 38, No. 7, pp.1072-1077, 2009.
[38] X. Chen, S. N. Girard, F. Meng, E. Lara-Curzio, S. Jin, J. B. Goodenough, J. Zhou, and L. Shi, “Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides”, Adv. Energy Mater., 4, 1400452, 2014.
[39] I. Itoh, and M. Yamada, “Synthesis thermoelectric manganese silicide by machnical alloying and pulse discharge sintering”, Journal of electronic materials, Vol. 38, pp.925-929, 2009.
[40] Z.M. Wang, Y. D. Wu, and Y. J. He, “Seebeck coefficient of Mn-Si materials prepared by spark plasma sintering”, International journal of modern physics B, 18, pp.2279-2286, 2004.
[41] 周雅文,「火花電漿燒結技術於熱電材料開發之應用」,工業材料雜誌,287期,2010年11月。
[42] 林麗娟,「X光繞射原理及其應用」,工業材料雜誌,86期,100-109頁,1994年2月。
[43] D. A. Ditmars, S. Ishihara, S. S. Chang, and G. Bernstein, “Enthalpy and heat-capacity standard reference material : synthetic sapphire (α-Al2O3) from 10 to 2250 K ”, JOURNAL OF RESEARCH of the National Bureou of Standards, Vol.87, No. 2, pp. 159-163, March-April 1982.