跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾冠豪
Guan-Hao Tseng
論文名稱: 應用MediaPipe 於Unity虛擬實境遊戲中的平衡復健訓練系統
Application of MediaPipe in a Unity-Based Virtual Reality Game System for Balance Rehabilitation Training
指導教授: 吳炤民
Chao-Min Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 95
中文關鍵詞: 虛擬實境平衡復健
外文關鍵詞: Virtual Reality, Balance Rehabilitation
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高齡化社會的加劇,老年人的身體功能退化問題日益受到重視,特別是在平衡能力方面,衰退所導致的跌倒風險更是影響其生活品質與安全的重大因素。傳統的復健訓練雖能有效強化肌力與穩定性,但常因缺乏趣味性與即時回饋而導致參與意願低落,影響訓練成效與持續性。有鑑於此,本研究旨在開發一套結合MediaPipe動作捕捉與Unity遊戲引擎的VR虛擬實境平衡訓練系統,作為提升平衡訓練參與度與效果的創新工具。系統設計採用市售HTC VIVE Pro作為VR操作平台,搭配網路攝影機與 MediaPipe Pose模型即時擷取使用者的33個人體關鍵點姿態資訊,並透過使用者資料包協定(User Datagram Protocol, UDP)將資料整合至使用Unity所開發的互動式遊戲場景中,建立即時回饋與沉浸式體驗。訓練內容共分為三個具情境敘事的關卡:第一關透過左右閃躲設計刺激重心轉移與前庭眼反射(Vestibulo-Ocular Reflex, VOR)功能;第二關要求玩家追蹤並擊落動態目標,以強化視覺與前庭整合反應;第三關則融合下蹲啟動機制,針對股四頭肌進行初階肌力訓練,強化姿勢控制與跌倒預防能力。

    本研究採單組前後測實驗設計,透過單腳站立測試與 ABC 平衡信心量表(Activities-Specific Balance Confidence Scale)評估虛擬實境遊戲訓練系統之介入成效。考量本階段尚未進行倫理審查程序(Institutional Review Board, IRB),為避免高風險族群參與之倫理疑慮,實驗對象改以 18 至 25 歲之年輕成人為樣本,模擬實際應用場景。

    實驗期程為期 7 至 10 天,結果顯示 5 名受測者於閉眼單腳站立測
    試與遊戲內得分上,平均表現皆呈現一定幅度之提升。進一步以魏克生符
    號等級檢定進行統計分析,發現部分指標達顯著水準,初步驗證本系統具
    備促進平衡能力與操作熟練度之潛力。雖受限於樣本數限制,研究仍顯示
    本訓練系統未來可望發展為一種新的低成本、高親和力之智慧型居家復健
    模型,作為老年族群平衡訓練與個人化健康促進之可行應用基礎。


    With the intensification of population aging, the decline in physical function among older adults has become an increasingly critical issue, particularly in balance ability. Impaired balance significantly increases the risk of falls, directly affecting quality of life and safety. Although traditional rehabilitation training can effectively enhance muscle strength and stability, it often lacks engagement and real-time feedback, leading to low motivation and poor adherence. To address this, the present study aims to develop a virtual reality (VR) balance training system that integrates MediaPipe motion tracking and the Unity game engine, providing an innovative tool to enhance participation and effectiveness in balance training.
    The system utilizes the HTC VIVE Pro for VR interaction and a webcam with MediaPipe Pose to capture real-time skeletal data of 33 body landmarks. These motion data are transmitted via UDP protocol to control interactive scenes built in Unity, providing immersive feedback and real-time responsiveness.The training is structured into three narrative-rich levels: Level 1 involves lateral dodging to stimulate weight-shifting and vestibulo-ocular reflex (VOR); Level 2 requires visual tracking and striking moving targets, enhancing visual-vestibular integration; Level 3 introduces squat-based mechanics to activate the quadriceps for foundational strength training aimed at fall prevention.

    This study adopts a single-group pretest-posttest experimental design to evaluate the effectiveness of a virtual reality (VR) game-based training system using the Single-Leg Stance Test (SLST) and the Activities-Specific Balance Confidence Scale (ABC Scale). Considering that the Institutional Review Board (IRB) approval was not obtained at this stage, and to avoid ethical concerns regarding high-risk populations, the participants were limited to young adults aged 18 to 25 as a simulated user group.

    The experimental period spanned 7 to 10 days. Results from five participants showed a general trend of improvement in both the SLST under eyes-closed conditions and in-game performance scores. Further statistical analysis using the Wilcoxon signed-rank test revealed significant differences in selected indicators, supporting the system's potential in enhancing balance abilities and operational proficiency. Although the sample size was limited, the findings suggest that the proposed system may serve as a low-cost, user-friendly smart rehabilitation model for home-based training, offering a promising approach for balance enhancement and personalized health promotion among older adults.

    摘要 i Abstract iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1研究動機 1 1.2 文獻探討 3 1.2.1傳統平衡能力復健方法 4 1.2.2 VR虛擬實境技術在平衡訓練中的發展 7 1.2.3動作捕捉技術的發展與應用 10 1.3 研究目的 11 1.4論文架構 12 第二章 VR虛擬實境結合MediaPipe之開發 13 2.1 Unity 遊戲開發平台簡介 13 2.2 VR 系統架構與設備介紹 15 2.2.1 基本VR設備組成 15 2.2.2 動作追蹤擴充套件 16 2.2.3 其他具身體追蹤功能設備 17 2.3 MediaPipe 姿勢辨識技術整合 18 2.3.1 MediaPipe Pose 21 2.4 Unity 與 MediaPipe 的資料串接整合 — UDP協定 22 第三章 研究方法 25 3.1 遊戲系統開發架構 25 3.1.1前庭平衡復健動作應用於遊戲設計 25 3.1.2 遊戲系統架構 26 3.1.3遊戲內部場景3D物件 30 3.2硬體裝置 32 3.2.1 VR設備 32 3.2.2攝影鏡頭 32 3.3實驗設計 33 3.3.1 研究對象 33 3.3.2 實驗流程說明 34 3.3.3測量工具與問卷 35 3.4實驗場地設置 37 第四章 遊戲介紹與實驗結果 39 4.1遊戲發想與介紹 39 4.1.1關卡一:躲避飛箭—前庭眼反射、本體感覺訓練 39 4.1.2關卡二:擊落飛行武器—視覺、前庭眼反射協調訓練 41 4.1.3關卡三:深蹲跳台—肌力訓練 43 4.2遊戲操作 45 4.2.1 主選單場景操作 45 4.2.2 第一關操作 47 4.2.3 第二關操作 49 4.2.4 第三關操作 50 4.3 實驗結果與討論 52 4.3.1 單腳站立平衡測試變化 52 4.3.2 遊戲關卡成績進展 60 4.3.3 ABC平衡信心量表問卷結果 64 4.3.4 整體趨勢與初步結論 66 4.4 目前發現軟硬體需優化問題 67 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 73 附錄 76 附錄A 專有名詞中英對照表 76 附錄B 魏克生符號等級檢定原始結果圖片 77 致謝 79

    Blodgett, J. M., Hardy, R., Davis, D., Peeters, G., Kuh, D., & Cooper, R. (2022). One-legged balance performance and fall risk in mid and later life: longitudinal evidence from a British birth cohort. American journal of preventive medicine, 63(6), 997-1006.

    Chen, P. Y., Wei, S. H., Hsieh, W. L., Cheen, J. R., Chen, L. K., & Kao, C. L. (2012). Lower limb power rehabilitation (LLPR) using interactive video game for improvement of balance function in older people. Archives of gerontology and geriatrics, 55(3), 677-682.

    Calhau, P., Ferreira, B., Menezes, P., & Amorim, A. M. (2024, November). Playful Therapy: Integrating VR Games for Vestibular Rehab. In 2024 International Conference on Graphics and Interaction (pp. 1-4). IEEE.

    Di Girolamo, S., Picciotti, P., Sergi, B., Di Nardo, W., Paludetti, G., & Ottaviani, F. (2001). Vestibulo-ocular reflex modification after virtual environment exposure. Acta oto-laryngologica, 121(2), 211-215.

    Delgado, F., & Der Ananian, C. (2021). The use of virtual reality through head-mounted display on balance and gait in older adults: A scoping review. Games for Health Journal, 10(1), 2-12.

    Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., ... & Grundmann, M. (2019). MediaPipe: A framework for building perception pipelines (arXiv:1906.08172). arXiv.

    Micarelli, A., Viziano, A., Micarelli, B., Augimeri, I., & Alessandrini, M. (2019). Vestibular rehabilitation in older adults with and without mild cognitive impairment: effects of virtual reality using a head-mounted display. Archives of gerontology and geriatrics, 83, 246-256.

    McConville, K. M. V., & Virk, S. (2007, May). Motor learning in a virtual environment for vestibular rehabilitation. In 2007 3rd International IEEE/EMBS Conference on Neural Engineering (pp. 600-603). IEEE.

    Powell, L. E. & Myers, A. M. (1995). The Activities-specific Balance Confidence (ABC) scale. Journal of Gerontology, 50(1), 28–34

    Prasertsakul, T., Kaimuk, P., Chinjenpradit, W., Limroongreungrat, W., & Charoensuk, W. (2018). The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomedical engineering online, 17, 1-17.

    Roy, B., Sur, M., & Nath, P. (2024). Cawthrone Cooksey exercise and its clinical implications: An updated narrative review. International Journal of Otolaryngology Research, 6(1), 10-17.

    Vellas, B. J., Wayne, S. J., Romero, L., Baumgartner, R. N., Rubenstein, L. Z., & Garry, P. J. (1997). One‐leg balance is an important predictor of injurious falls in older persons. Journal of the American Geriatrics Society, 45(6), 735-738.

    Xie, M., Zhou, K., Patro, N., Chan, T., Levin, M., Gupta, M. K., & Archibald, J. (2021). Virtual reality for vestibular rehabilitation: a systematic review. Otology & Neurotology, 42(7), 967-977.

    Xie, L., Yi, C. H., Kwon, O. Y., Choi, W. J., Park, J. H., & Cho, S. (2024). The Effects of a VR Training Program for Walker Avoidance Skill Improvement: A Randomized Controlled Trial. IEEE Transactions on Neural Systems and Rehabilitation Engineering.

    Zhao, M., Lu, N., & Guan, Y. (2024). Classification of Pilates Using MediaPipe and Machine Learning. IEEE Access.

    Carepatron.。ABC Scale Template。https://www.carepatron.com/templates/abc-scale (Accessed July 20, 2025)

    Timothy C. Hain.(2022)。Cawthorne-Cooksey Exercises。Dizziness-and-Balance.com. https://dizziness-and-balance.com/treatment/rehab/cawthorne.html (Accessed July 20, 2025)

    Mosley, M.。Why standing on one leg is a good test of your health。BBC Science Focus. https://www.sciencefocus.com/the-human-body/dr-michael-mosley-standing-on-one-leg (Accessed July 20, 2025)

    Physio-pedia.。Single Leg Stance Test。https://www.physio-pedia.com/Single_Leg_Stance_Test (Accessed July 20, 2025)

    QR CODE
    :::