跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林柏辰
Po-Chen Lin
論文名稱: 氮化鋁鎵/氮化鎵高電子移導率場效電晶體之製作與應用
AlGaN/GaN high electron mobility transistors:fabrication and application
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 氮化鋁鎵脈衝波氮化鎵場效電晶體
外文關鍵詞: AlGaN, GaN, HEMT, Pulse, FET
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先介紹HEMT的工作原理,以此為基礎設計我們的氮化鋁鎵/氮化鎵高電子移導率場效電晶體。在元件的歐姆接觸方面,我們參考歐姆接觸的原理,利用傳輸線模型以Ti/Al/Ni/Au (25/125/45/55 nm)的蒸鍍厚度、800℃-30秒鐘的熱退火條件,製作出阻抗為0.4 Ω-mm的歐姆接觸。元件製作完成之後,我們對氮化鋁鎵/氮化鎵高電子移導率場效電晶體作直流、小訊號、功率量測,元件特性汲最大飽和電流為900 mA/mm、最大轉導為196 mS/mm、增益截止頻率為37 GHz、功率增益截止頻率為45 GHz,其它功率上特性如功率增益為14.6 dB、最大輸出功率為25 dBm。在脈衝電流-電壓量測方面,我們結合低溫量測系統量測出元件在100K、200K、300K的電流-電壓特性,並分析元件的熱效應與表面缺陷。


    第一章 導論 1 §1.1 研究動機 1 §1.2 論文架構 3 第二章 氮化鋁鎵/氮化鎵高電子移導率電晶體工作原理 5 §2.1 氮化鋁鎵/氮化鎵高電子移導率場效電晶體介紹 5 §2.2 歐姆接觸原理 13 §2.3 傳輸線模型原理 18 §2.4 蕭特基接觸原理 21 §2.5 結論 24 第三章 氮化鋁鎵/氮化鎵高電子移導率場效電晶體製程 25 §3.1 元件隔離製程測試 25 §3.2 歐姆接觸製程測試 30 §3.3 氮化鋁鎵/氮化鎵高電子移導率場效電晶體製程 34 §3.4 結論 45 第四章 氮化鋁鎵/氮化鎵高電子移導率場效電晶體電性量測結果 46 §4.1 藍寶石基板元件電性量測結果 46 §4.2 矽基板元件電性量測結果 50 §4.3 元件小信號參數萃取 54 §4.4 結論 61 第五章 Pulsed IV量測系統與分析 62 §5.1 Pulsed IV量測系統架構 62 §5.2 Pulsed IV量測結果分析 64 §5.3 結論 69 第六章 結論 71 參考文獻 73

    [1] S. Nakamura and G. Fasol, “The Blue Laser Diode”, Springer, Heidelberg, 1997.
    [2] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes”, J. Appl. Phys., Vol.35, pp.74, 1996.
    [3] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN based light emitting diodes operable at high ambient temperature”, J. Appl. Phys., Vol. 37, pp.479-481, 1998.
    [4] S. Nakamura, T. Mukai ,and M. Senoh, “High power GaN P-N junction blue light emitting diodes”, J. Appl. Phys., Vol.30, pp.1998, 1991.
    [5] S. Nakamura, T. Mukai ,and M. Senoh, “Candela classhigh brightness InGaN/AlGaN double heterostructure blue light emitting diodes”, Appl. Phys. Lett., Vol.64, pp.1687, 1994.
    [6] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett., Vol.62, pp.1786, 1993.
    [7] L. F. Eastman, V. Tilak, J. Smart, B. M. Green, and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power amplifiers”, IEEE Trans. Electron Devices, Vol.48, No.3, pp.479, 2001.
    [8] V. Kumar, W. Lu, F.A. Khan, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, and I. Adesida, “High performance 0.25 mm gate-length AlGaN/GaN HEMTs on sapphire with transconductance of over 400 mS/mm”, Electronics Lett., Vol.38, pp.252, 2002.
    [9] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction”, Appl. Phys. Lett., Vol.63, pp.1214, 1993.
    [10] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas ,and K. L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contact”, Electronics Lett., Vol.34, pp.2354, 1998.
    [11] J. M. Barker, D. K. Ferry, S. M. Goodnick, D. D. Doleske, A. Allerman, and R. J. Shul, “Effects of surface treatment on the velocity-field characteristics of AlGaN/GaN heterostructures”, Semicond. Sci. Tech. 19, pp.478-480, 2004.
    [12] A. E. Wickenden, D. D. Koleske, R. L. Henry, R. J. Gorman, M. E. Twigg, M. Fatemi, J. A. Freitas, Jr., and W. J. Moore, “The influence of OMVPE growth pressure on the morphology, compensation, and doping of GaN and related alloys”, J. Electronic Materials, Vol. 29, No.1, 2000.
    [13] M. A. Khan, and M. S. Shur, “GaN-Based Devices for Electronic Applications”, Vol.33, 2004.
    [14] O. Ambacher, J. Smart, J. R. Shealy, and M. Murphy , “Two-dimentional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys., Vol.85, No.6, pp.3222, 1999.
    [15] R.Dimitrov et al.,“Two-dimentional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam exitaxy and Metalorganic chemical vapor deposition on sapphire”, J. Appl. Phys., Vol.87, No.7, pp.3375, 2000.
    [16] O.Ambacher, B. Foutz, J. Smart, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, J. Appl. Phys., Vol.87, No.1, pp.334, 2000.
    [17] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy”, J. Appl. Phys., Vol.86, No.8, pp.4520, 1999.
    [18] M.S. Shur and M.A. Kahn, “Wide Band Gap Semiconductors. Good Results and Great Expections”, in the Proceedings of 23d International Symposium on GaAs and Related Compounds, St. Petersburg, Russia, Sep. 22-28, 1996, Institute Phys. Conferrence Series, No.155, Chapter 2, pp. 25-32, M.S. Shur and R. Suris, Editors, IOP Publishing, London 1997.
    [19] F. A. Ponce, “Group III Nitride Semiconductor Compounds Physics and Applications”, pp.123-133, 1998.
    [20] H. Morkoc, “GaN-based modulation doped FETs and UV detectors”, Solid State Electron, Vol.46, pp.157-202, 2002.
    [21] T. C. Shen, G. B. Gao, and H. Morkoc, “Recent Developments in Ohmic Contacts to III-V Compound Semiconductors”, J. Vac. Sci. Tech., B10, pp.2113, 1992.
    [22] D. K. Schroder, “Semiconductor material and device characterization”, Wiley Interscience, p.169-208, pp.133, 1998.
    [23] R. E. Williams, “Galliun Arsenide processing Techniques”, chapter 11, pp.225-253.
    [24] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au ohmic contacts for n-GaN”, Appl. Phys. Lett., Vol.68, pp.1672, 1996.
    [25] 李嗣涔, 管傑雄, 孫台平, 半導體元件物理, 三民書局, pp.61, 1995
    [26] P. E. Riley, S. S. Peng, L. Fang, “Plasma etching of Aluminum for ULSI circuits”, Solid State Tech., pp.47, 1993.
    [27] S. K. Ghandhi, “VLSI Fabrication Principles”, pp.635, 1994.
    [28] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etching of GaN using BCl3”, Appl. Phys. Lett., Vol.64, No.7, 1994.
    [29] G. F. McLane and L. Casas, “High etch of GaN with magnetron reactive ion etching in BCl3 plasmas”, Appl. Phys. Lett., Vol.66, No.44, pp.332, 1995.
    [30] D. Basak, T. Nakanishi, S. Sakai, “Reactive ion etching of GaN using BCl3 , BCl3/Arand BCl3 / N2 gas plasmas”, Solid State Electronics, Vol.44, pp.725-728, 2000.

    QR CODE
    :::