跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張忠興
Chung-Hsing Chang
論文名稱: 轉角中空光波導的研製
Study of Bent Hollow Waveguide
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 轉角波導中空光波導SU8光波導
外文關鍵詞: hollow optical waveguide, SU8 optical waveguide, bent waveguide
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們運用二氧化矽與非晶向矽(amorphous silicon, a-Si)、二氧化矽(silicon dioxide, SiO2)與氮化矽(silicon nitride, Si3N4)兩種不同結構所組成的高反射之布拉格反射鏡(Bragg reflectors),設計並製作中空光波導。設計過程中,我們將會利用能帶結構(band structure)與傳遞矩陣法(transfer matrix method)設計出膜層結構。設計中空波導後,我們將設計出兩種膜層結構組合而成的中空波導之轉角波導,並利用二維有限時域差分法(two-dimensional finite-difference time-domain method, 2-D FDTD)模擬彎角式中空光波導(angled hollow waveguides)及截角式中空光波導(cut-type 90o-hollow waveguides)。論文中,我們將會介紹波導的製作過程及其量測結果。


    In this study, we design and fabricate hollow waveguides by the Bragg reflectors. Moreover, we utilize two types of multilayer structures including silicon dioxide/amorphous silicon (SiO2/Si) and silicon dioxide/silicon nitride (SiO2/Si3N4) to form the Bragg reflectors. We design multilayer structures by the transfer matrix method. We design the bent hollow waveguides with two types of multilayer structures by using the two-dimensional finite-difference time-domain method (2-D FDTD) to simulate bent hollow waveguides with different bending designs. In the end, we introduce the fabrication process and measurement results.

    摘要............................................................................................................................... I Abstract ......................................................................................................................... II 謝誌.............................................................................................................................. III 目錄.............................................................................................................................. IV 圖目錄.......................................................................................................................... VI 表目錄.......................................................................................................................... IX 第1 章 序論............................................................................................................ 1 1.1 光波導........................................................................................................ 2 1.1.1 中空光纖........................................................................................ 3 1.1.2 中空光波導.................................................................................... 4 1.2 本章結論與研究動機................................................................................ 7 第2 章 光波導設計原理........................................................................................ 8 2.1 布洛赫波與色散關係................................................................................ 8 2.2 布拉格反射器與全方向反射鏡.............................................................. 12 2.3 傳遞矩陣.................................................................................................. 15 2.4 有限時域差分法...................................................................................... 19 2.5 結論.......................................................................................................... 24 第3 章 光波導設計與模擬.................................................................................. 25 3.1 膜層設計.................................................................................................. 25 3.2 彎角式中空光波導模擬.......................................................................... 28 3.3 截角式中空光波導模擬.......................................................................... 30 3.4 模擬結論.................................................................................................. 33 第4 章 中空光波導製程與量測結果分析.......................................................... 35 4.1 光波導製程與量測.................................................................................. 35 4.2 SU8 光波導 ............................................................................................. 37 4.2.1 彎角式SU8 光波導量測與分析 ................................................. 39 4.2.2 截角式SU8 光波導量測與分析 ................................................. 41 4.3 中空光波導.............................................................................................. 43 4.4 量測結論.................................................................................................. 49 第5 章 總結與未來工作...................................................................................... 50 5.1 本論文總結.............................................................................................. 50 5.2 未來工作.................................................................................................. 51 附錄.............................................................................................................................. 53 參考文獻...................................................................................................................... 57

    [1] S. E. Miller, "Integrated optics: an introduction.," Bell Syst. Tech. J., 48 (7), pp. 2059-2068, 1969.
    [2] N. Savage, "Linking with light [high-speed optical interconnects]," IEEE Spectr., 39 (8), pp. 32-36, 2002.
    [3] 羅仕守, "新型中空光波導研製與應用," 國立中央大學, 光電科學研究所 (2005).
    [4] B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics." (Weily, 1991).
    [5] 欒丕綱、陳啟昌, "光子晶體 - 從蝴蝶翅膀到奈米光子學." (五南圖書出版股份有限公司, 2006).
    [6] E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguide for long distance optical transmission and laser," Bell Syst. Tech. J., 43, pp. 1783-1809, 1964.
    [7] J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt., 19, pp. 211-217, 2000.
    [8] M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, "Silver-coated hollow-glass waveguide for applications at 800 nm," Appl. Opt., 41 (33), pp. 7031-7035, 2002.
    [9] B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature, 420 (6916), pp. 650-653, 2002.
    [10] V. Gopal and J. A. Harrington, "Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides," Opt. Express, 11 (24), pp. 3182-3187, 2003.
    [11] E. Pone, C. Dubois, N. Guo, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, "Drawing of the hollow all-polymer Bragg fibers," Opt. Express, 14 (13), pp. 5838-5852, 2006.
    [12] P. Russell, "Photonic crystal fibers," Science, 299 (5605), pp. 358-362, 2003.
    [13] F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express, 14 (9), pp. 4135-4140, 2006.
    [14] J. C. Knight, "Photonic crystal fibres," Nature, 424 (6950), pp. 847-851, 2003.
    [15] A. Y. Pochi Yeh, Chi-Shain Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., 67, pp. 423-437, 1977.
    [16] J. B. Shellan, P. Agmon, P. Yeh, and A. Yariv, "Statistical analysis of Bragg reflectors," J. Opt. Soc. Am., 68 (1), pp. 18-27, 1978.
    [17] Y. Fink, J. N. Winn, S. H. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, 282 (5394), pp. 1679-1682, 1998.
    [18] J. N. Winn, Y. Fink, S. H. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., 23 (20), pp. 1573-1575, 1998.
    [19] A. R. Hawkins and H. Schmidt, "Optofluidic waveguide: II. fabrication and structures," Microfluid Nanofluid, 4, 2008.
    [20] C. Chii-Chang, L. Pi-Gang, C. Jenq-Yang, and L. Hsiao-Wen, "Design of omnidirectional reflector air-waveguide," presented at the Lasers and Electro-Optics, 2003. CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on, 2003.
    [21] S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett., 29 (16), pp. 1894-1896, 2004.
    [22] S.-S. Lo, M.-S. Wang, and C.-C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express, 12 (26), pp. 6589-6593, 2004.
    [23] Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-sizelow-refractive-index material," Opt. Lett., 29 (14), pp. 1626-1628, 2004.
    [24] D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett., 85 (16), pp. 3477-3479, 2004.
    [25] D. Yin, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express, 12 (12), pp. 2710-2715, 2004.
    [26] S. S. Lo, H. K. Chiu, C. C. Chen, S. C. Hsu, and C. Y. Liu, "Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent," IEEE Photon. Technol. Lett., 17 (12), pp. 2592-2594, 2005.
    [27] J. P. Barber, E. J. Lunt, Z. A. George, D. L. Yin, H. Schmidt, and A. R. Hawkins, "Integrated hollow waveguides with arch-shaped cores," IEEE Photon. Technol. Lett., 18 (1-4), pp. 28-30, 2006.
    [28] S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, "Fabricating a hollow optical waveguide for optical communication applications," J. Microelectromech. Syst., 15 (3), pp. 584-587, 2006.
    [29] R. Bernini, E. De Nuccio, A. Minardo, L. Zeni, and P. M. Sarro, "Integrated silicon optical sensors based on hollow core waveguide," presented at the Silicon Photonics II, San Jose, CA, USA, 2007.
    [30] R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express, 15 (7), pp. 3902-3915, 2007.
    [31] J. R. Lee, J. P. Barber, Z. A. George, M. L. Lee, H. Schmidt, and A. R. Hawkins, "Microchannels with rectangular and arched core shapes fabricated using sacrificial etching," J. Micro/Nanolith. MEMS MOEMS, 6 (1), 2007.
    [32] S. S. Lo and C. C. Chen, "1X2 Multimode interference couplers based on semiconductor hollow waveguides formed from omnidirectional reflectors," Opt. Lett., 32 (13), pp. 1803-1805, 2007.
    [33] H.-K. Chiu, F.-L. Hsiao, C.-H. Chan, and C.-C. Chen, "Compact and low-loss bent hollow waveguides with distributed Bragg reflector," Opt. Express, 16 (19), pp. 15069-15073, 2008.
    [34] M. Kumar, F. Koyama, and C. J. Chang-Hasnain, "Tunable hollow optical waveguide with high contrast grating," presented at the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008. 21st Annual Meeting of the, 2008.
    [35] E. J. Lunt, B. S. Phillips, C. J. Jones, A. R. Hawkins, P. Measor, S. Kuehn, and H. Schmidt, "Hollow waveguide optimization for fluorescence based detection," presented at the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics, San Jose, CA, USA 2008.
    [36] J. G. Fleming, S.-Y. Lin, and G. R. Hadley, Patent No. US 6,807,353 B1 (2004).
    [37] M. A. Duguay, Y. Kokubun, and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., 49 (1), 1986.
    [38] P. Y. Amnon Yariv, "Optical Waves in crystals." (John Wiley & Sons, 1984).
    [39] E. Hecht, "Optics." (Addison Wesley, 2002).
    [40] J. P. Dowling, "OPTICAL PHYSICS:Mirror on the Wall: You''re Omnidirectional After All?," Science, 282 (5395), pp. 1841-1842, 1998.
    [41] H. A. Macleod, "Thin-Film Optical Filters." (CRC Press, 2001).
    [42] 李正中, "薄膜光學與鍍膜技術." (藝軒圖書出版社, 2006).
    [43] Y. Kane, "Numerical solution of inital boundary value problems involving maxwell''s equations in isotropic media," IEEE Trans. Antennas Propagat., 14 (3), pp. 302-307, 1966.
    [44] K. K. Kawano, Tsutomu, "Introduction to Optical Waveguide Analysis: Solving Maxwell''s Equation and the Schrödinger Equation." (John Wiley & Sons, 2001).
    [45] D. J. Griffiths, "Introduction to Electrodynamics." (Prentice Hall, 1998).
    [46] 張高德, "廣義光子晶體元件之研究與分析," 國立中央大學, 光電科學研究所 (2007).
    [47] J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., 114 (2), pp. 185-200, 1994.
    [48] E. D. Palik, "Handbook of Optical Constants of Solids." (Academic Press, 1985).
    [49] H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 mu m," Appl. Phys. Lett., 81 (24), pp. 4502-4504, 2002.
    [50] 邱華恭, "矽晶片波導元件研究," 國立中央大學, 光電科學研究所 (2005).
    [51] R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," University of Central Florida, the College of Optics / CREOL&FPCE (2006).
    [52] 王謀賢, "砷化鎵光子晶體共振腔研究," 國立中央大學, 光電科學研究所 (2005).
    [53] I. A. Borreman, D. S. Musa, i. A. A. M. Kok, d. M. B. J. Diemeer, and p. d. A. Driessen, "Fabrication of polymeric multimode waveguides and devices in SU-8 photoresist using selective polymerization," in IEEE/LEOS Benelux Chapter 2002 Annual Symposium, T. D. Visser, D. Lenstra, and H. F. Schouten, Eds. Amsterdam: Vrije Universiteit Amsterdam, 2002, pp. 83-86.
    [54] M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, "Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications," J. Lightwave Technol., 25 (5), pp. 1284-1289, 2007.
    [55] C. S. Huang and W. C. Wang, "Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding," Appl. Opt., 47 (25), pp. 4540-4547, 2008.
    [56] H. C. Lefevre, "Single-mode fibre fractional wave devices and polarisation controllers," Electron. Lett., 16 (20), pp. 778-780, 1980.

    QR CODE
    :::